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ABSTRACT 

Construction progress assessment and monitoring forms an important part of project 

control. Owing to the inherent complexity of construction activities, traditional progress 

monitoring techniques are inefficient. There are increasing efforts to automate the data 

capture system and the progress measurement methods through the adoption of 

technologies such as BIM. Technological advancements in reality capture devices have 

made it possible for increasingly automated as-built data collection, which is 

subsequently integrated with BIM to recognise the progress. 

Generation and quality of as-built models influence the subsequent applications such 

as progress monitoring, quality control, and deviation detection. Laser scanners are 

widely prevalent, but due to their innate limitations such as mobility issues, the high 

skill level of personnel for operation, high computational requirements and cost, they 

have been difficult to adopt for construction environments.  

This study aims at investigating alternate commercially available technological devices 

to capture the reality and generate as-built models. Experimental evaluations were 

carried out in the laboratory test bed and in a construction site for two different 

commercially available range imaging devices based on stereo and infrared 

technologies. The evaluation factors include time efficiency, mobility, ease of scanning, 

the stability of capture, the accuracy of point cloud models and technological 

limitations. The generated as-built models are used to assess construction progress 

through a voxel-based binary classifier algorithm developed for this research. The 

efficiency of the progress measurement system and the level of the feasibility of using 

these devices for progress measurement applications are analysed using accuracy, 

recall, and precision metrics. 

It was found that voxel-based binary classifier performed better when compared with 

other classifiers for as-built models from these range imaging devices. The laboratory 

test bed results showed the progress classification accuracies exceed 90%. The 

construction site result showed the progress classification accuracies as 87.54% for 

ZED camera and 85.62% for Google Tango. It was found that despite both the devices 

having lower accuracy than conventional technologies such as lasers and 

photogrammetry, the progress recognition accuracies were comparable to them. It was 
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found that variations in point densities were one of the major causes for low accuracy 

of progress recognition. The results show that despite accuracy limitations, the as-built 

models generated by both the devices deliver comparable accuracies of progress 

recognition with respect to other technologies. The most important contribution of this 

study is the confirmation of feasibility of commercially available range imaging devices 

for construction progress monitoring application. The results of the experimental 

evaluations and progress recognition accuracies can be used as a step towards 

establishing benchmarks for optimum utilization of these devices for other construction 

applications. Another significant contribution of this work is the development and 

validation of a prototype of a voxel-based binary classifier that can be used to assess 

progress quickly. 
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CHAPTER 1 

1 CHAPTER 1 INTRODUCTION 

INTRODUCTION 

 

Project control relies on availability of efficient 

and accurate progress assessment for quick 

decision-making. Owing to the inherent 

complexity of construction activities, traditional 

progress monitoring techniques are labour 

intensive, time-consuming and inefficient 

(Golparvar-Fard 2011; Navon & Sacks 2007). 

Further, manual analysis of progress is tedious and 

subjective, leading to erroneous progress 

reporting. The time it takes to identify the 

progress, and detect discrepancies between as-

planned and as-built model is proportional to the 

cost and difficulty in implementing corrective 

measures (Kopsida et al. 2015). As a result, it 

becomes imperative that accurate as-built data is 
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collected with minimal effort and processed 

automatically to enable efficient project 

monitoring and control. 

The rise of Building Information Modelling to 

track and visualize construction progress has 

increased the automation of progress recognition. 

While numerous commercial software packages 

such as xBIM, Autodesk BIM 360 help to 

automate the as-built data collection, they do not 

address the process of data collection. However, 

in these methods, the quality of the collected 

progress data highly depends on the inspector’s 

experience and on the quality of measurements.  

In order to automate the process of as-built data 

collection, various technologies such as Barcodes, 

RFID, FPS/GIS, strain sensors, lasers, cameras 

have been used for assessing construction 

progress. While technologies such as Laser 

scanners overcome the limitations of RFID, 

GPS/GIS etc., they have their own limitations. 

Laser scanners are expensive and require high 
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computational power for post-processing, high 

skill level of personnel for operation and lesser 

mobility. Also, the cost of installation and 

maintenance of such technologies and the ease of 

use in construction environments have prevented 

widespread adoption of this technology.  

Range cameras are devices that give a depth value 

for every captured pixel. There are different 

techniques and sensors for computing the depth 

such as Time of Flight sensors and stereo vision 

technologies, structured light, etc. Recently, range 

cameras have started to come into the consumer 

market making them affordable. The reduced 

costs enable construction personnel to take 

ownership of these technologies and use them for 

exploration in applications such as construction 

progress monitoring . In addition, most of these 

devices are handheld and require minimal skill 

levels to operate. 

However, their accuracy, range, and operational 

capabilities have prevented them from being 
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adopted for construction previously. Due to 

advancements in hardware and processing 

software, these technologies can now overcome 

their prior limitations. However, the extent of 

feasibility of using these technologies to capture, 

model and monitor construction progress needs to 

be evaluated.  

This study evaluates two range camera 

technologies for their feasibility in construction 

progress monitoring: a passive stereovision-

videogrammetry based camera and an active 

infrared-ToF based camera.  

1.1 RESEARCH PROBLEM 

The quality of the raw data from any technology 

needs to be evaluated for its effective utilization 

prior to its application in other domains. Low-

quality raw data would result in higher post-

processing time and would require computers with 

high computation capability. While this data can 

be improved by better processing techniques, it 
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would contradict the use of low-cost devices 

which are time efficient. This study started with 

the research question “Can range imaging 

devices be used for construction progress 

monitoring application?”. This question is 

addressed by exploring the level of accuracy 

achievable by the as-built models and the progress 

prediction accuracy using these devices.  

1.2 THESIS ORGANISATION 

This thesis is organized into six chapters with 

Introduction forming the first chapter. Each 

chapter is further divided into the sections. A brief 

explanation of the contents of these chapters is 

given below. 

 Chapter 2 reviews the literature on 

technologies used for automated as-built 

data capture and progress recognition 

methods. The chapter concludes with 

research gaps identified from the literature 
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which serve as the motivation for this 

work. 

 Chapter 3 presents the objectives of this 

work and its scope. It also discusses the 

methodology followed to conduct this 

research along with brief discussions of 

some theoretical concepts. 

 Chapter 4 introduces the range imaging 

technologies and the testing and evaluation 

methods for assessing their performance. 

This chapter also discusses the design and 

prototype development of an automated 

progress recognition system along with the 

metrics for assessing the efficiency of the 

above system. 

 Chapter 5 presents the results of the testing 

and evaluation of the range imaging 

devices in the laboratory environment and 

construction site. It also discusses the 

performance of the progress recognition 
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system developed in this research and the 

implications of the results from a 

construction perspective.  

 Chapter 6 summarizes the contributions of 

this work with the important conclusions. 

Further, it presents the potential areas for 

future research. 
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CHAPTER 2 

2 CHAPTER 2 LITERATURE 

REVIEW 

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

The previous chapter gave an outline on the need 

for automated as-built data collection for efficient 

construction progress monitoring. In order to 

answer the research question, a literature study 

was conducted. The review consists of three 

sections. In the first section, the technologies for 

automated as-built data capture for construction 

progress monitoring applications are identified 

and reviewed. In the second section, a review of 

the parameters for evaluating the performance of 

different technologies are discussed. In the last 

section, different approaches for automated 

progress recognition are reviewed. 
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2.2 AUTOMATED AS-BUILT DATA 

CAPTURE TECHNOLOGIES 

This section discusses various automated data 

collection technologies used in construction and 

presents it in three sections. The first section 

briefly examines certain major works in earlier 

technologies for capturing construction as-built 

data and progress monitoring. These include 

barcodes, RFID, GPS/GIS and UWB. In the next 

section, prior research in the area of active sensors 

such as laser scanners is analysed, followed by a 

critical review of work done on passive sensor-

based technologies such as photogrammetry, 

videogrammetry etc. The final section reviews 

research works on the application of commercially 

available range imaging devices and the 

challenges associated with their application in 

construction field. 
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2.2.1 Earlier technologies 

2.2.1.1 Barcode 

Barcodes are used in construction monitoring by 

evaluation and management of prefabricated 

components and then tracing it back to the planned 

schedule of dispatch and then backtracking to the 

construction progress (Cheng and Chen 2002). 

Usually, the data collected from barcodes are 

implemented in three phases of a construction 

project: Design, Manufacturing, and Construction.  

They are commonly used to track materials and 

infer the construction progress from them. 

However, limitations such as low storage capacity, 

durability, readability etc. have limited their 

widespread adoption in construction (Kopsida et 

al. 2015; Vähä et al. 2013).  
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2.2.1.2 Radio Frequency Identification (RFID) 

RFID tags have been explored commonly for 

prefabricated construction for applications such as 

material and labour tracking for inventory 

management, productivity measurements, 

progress measurements (Valero et al. 2015; 

Ikonen et al. 2013; Xie et al. 2010). The 

information management for RFID tags require 

large data storage capabilities. In particular, for 

Figure 2.1 Component installation status 

presented in BIM (Ikonen et al. 2013) 
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elements which are not present in the line of sight, 

tracking with such tags becomes difficult. Ikonen 

et al. presented pilot studies in using RFID for 

tracking logistics and their status (shown in Figure 

2.1) in a construction site (Ikonen et al. 2013). 

RFID has also been integrated with other 

technologies for effective construction 

monitoring. For example, Wang et al. developed a 

method for using RFID to track different 

components and visualizing construction progress 

by integrating the information with BIM (Wang et 

al. 2013). However, not all construction elements 

can be tagged with RFIDs. Further, the technology 

requires additional investments on equipment 

installations and human effort are required for 

capturing the data. For cast-in-situ construction, 

the tags cannot be used to measure quantity. 

Construction activities requiring rework cannot be 

measured using this technology as it cannot 

capture the geometric information of the as-built 

component. 
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2.2.1.3 Ultra-wide band 

Similar to RFID tag, Ultra-wide band (UWB) 

provides real-time location tracking to resources 

that are equipped with UWB tags. It works on 

short pulse RF waveform based on time domain 

principles of electromagnetic theory. It has a 

higher range, measurement accuracy, and 

immunity to interference when compared with 

RFID (Cheng et al. 2010). 

Figure 2.2 Application of UWB tags in a 

construction Site (Cheng et al. 2011) 
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Cheng et al. also evaluated the performance of 

UWB for construction resource tracking in a 

construction site (Cheng et al. 2011). Although the 

ultra-wide band is accurate than RFID, it has 

inherent disadvantages such as the requirement for 

modeling, association of tags with the equipment 

etc. In addition, the range of UWB is limited and 

semantic information about the construction 

elements cannot be captured. 

2.2.1.4 Global Positioning System (GPS) and 

Geographical Information System (GIS) 

Global Positioning System (GPS) and 

Geographical Information System (GIS) have 

been used for automatic data collection to monitor 

real-time construction progress (Burbano et al. 

2016). Real-time information of materials and 

equipment can be tracked using GPS and GIS 

systems. This helps in obtaining the real-time 

vehicle locations, navigation assistance, and drive 

speed heading information. All these data could be 

integrated with real-time information 
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management system to track the progress of 

construction (Pradhananga and Teizer 2013; Li et 

al. 2005). Cheng and Chen developed a method for 

integrating GIS with barcode for construction 

material tracking, schedule monitoring, and 

control (Cheng and Chen 2002). Figure 2.3 shows 

the operational structure of the schedule 
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monitoring and control system developed by the 

study. 

However, the technology can be used only when 

the activities have a direct relation to the distinct 

materials used. In addition, GPS is inefficient in 

areas where the signal reception is low and cannot 

be used indoors. Semantic information about the 

Figure 2.3 Barcode integrated with GIS for construction schedule 

monitoring and control (Cheng and Chen 2002) 
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construction component cannot be captured by 

GIS, thus limiting its potential usage for 

construction monitoring.  

2.2.2 Active sensor based technologies 

Active sensors utilize emitted light for capturing 

reality. The emitted light can be laser or infrared. 

There are different mechanisms used to sense the 

depth using emitted light such as Time-of-Flight 

(ToF), structured light etc. In ToF, the time taken 

for the emitted light to strike an object’s surface 

and reflect back is recorded. Based on this 

information and intrinsic parameters of the sensors 

used, the 3D coordinate of the point is calculated. 

Structured light projects a pattern of light on an 

object and the distortion of the pattern is analyzed 

to determine the depth of objects in the scene. 

Laser scanning has many benefits such as high 

accuracy, dense point clouds that provide 

geometric and semantic information (when 

integrated with an RGB camera), large operational 

range, etc. 3D laser scanning is based on ToF or 
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structured light techniques for computation of 

depth of a scene. In ToF technique, the time 

elapsed in the detected of the reflected light is used 

to compute the depth of the scene. This process 

results in a collection of points, which can be 

combined to form accurate 3D models. 

High-end laser scanners can acquire 3D with 

accuracy in the range of 3mm at 50m with a 

resolution of 12mm at 100m (Bosché 2010). Due 

to their accuracy, they are often used for quality 

control (Akinci et al. 2006), obstacle tracking and 

interference detection (Gordon & Akinci 2005), 

and monitoring (Sacks et al. 2003). However, high 

precision cannot be achieved at object edges and 

spatial discontinuities (Brilakis et al. 2011). 

Turkan et al. could obtain significant positive 

results for progress monitoring using 3D laser 

scanner with a simple 3D model (Turkan et al. 

2010). Zhang and Arditi were able to develop an 

automated progress recording system that did not 

require any human intervention at the site or for 
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processing the point clouds (Zhang and Arditi 

2013).  

While many of these studies report a high 

accuracy of progress recognition, factors such as 

computational effort of generating them and the 

skill level required from the user were not 

addressed. Additionally, laser scanners are 

expensive and require considerable time for 

capturing large areas through multiple scans. In 

addition, they generate dense 3D point clouds, 

which imposes high cost and time for computation 

and processing. For obtaining a full 3D 

reconstruction of a building, several control points 

have to be set up in order to stitch different laser 

scans together, increasing the data acquisition 

time (Hajian and Becerik-Gerber 2010; Sacks et 

al. 2003). The discontinuity in spatial data, the 

need for regular sensor calibrations and a slow 

warm-up time are also of the other disadvantages 

of this technology (Golparvar Fard et al. 2012). 

From a construction perspective, the as-built state 
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needs to be captured frequently 

(daily/weekly/biweekly/monthly). As a result, 

technologies which are cost effective and are able 

to capture and generate point clouds in real-time 

are preferred. 

2.2.3 Passive sensor-based technologies 

Passive sensors utilize illumination to capture 

reality. They rely on natural and artificial 

illumination to detect the RGB information of the 

scene and compute the depth through algorithms. 

Both photogrammetry and videogrammetry are 

based on passive sensors. It requires more user 

intervention to generate the 3D scene when 

compared to laser scanning (Sternberg et al. 

2004), but lower equipment cost and faster data 

acquisition time make it more viable for 

construction applications. The actual state of the 

construction site is detected by photogrammetric 

surveys and is then used for automated 

comparison with the planned state for early 



 

37 

 

detection of deviations in the construction process 

(Braun et al. 2015). 

The level of accuracy of the point cloud generated 

from these technologies depends on the camera’s 

resolution and the bundle adjustment algorithm 

(Triggs et al. 2000). The accuracy of point clouds 

generated using photogrammetry has been 

assessed by many research works (Bosche et al. 

2009; Triggs et al. 2000). Common methods of 

accuracy assessment include resolution of point 

cloud generated, dimensional errors and deviation 

of point cloud model with respect to ground truth 

model (Bhatla et al. 2012; El-Omari and Moselhi 

2011).  

With the advancements in Structure-from-Motion 

(SfM) techniques for the 3D reconstruction, 

photogrammetry has been increasingly used to 

track construction progress (Sirmacek and 

Lindenbergh 2014; Bhatla et al. 2012; Brilakis et 

al. 2011). Initially, images captured were 

registered using manual and semi-automatic 
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methods for 3D reconstruction, and these images 

were used for comparison with BIM to identify 

components constructed (Golparvar-Fard et al. 

2009a). Time-lapsed, image-based recognition 

upon comparison with BIM component for 

progress identification has also been experimented 

(Golparvar-Fard et al. 2009b; Ibrahim et al. 2009; 

Zhang et al. 2009). In these works, the changes in 

the time lapsed images are searched and 

recognized, and finally compared to a 3D model 

to determine the progress. However, the 

recognition is non-invariant; lighting conditions 

and occlusions limit the efficiency of the system. 

While these can be overcome through prior 

planning during data capture, it requires 

considerable preparatory efforts by the user. This 

further increases implementation problems in 

practice. Further, some parts of the data capture 

and 3D reconstruction are not automated 

completely (Kopsida et al. 2015; Golparvar-Fard 

et al. 2011b; Zhu and Brilakis 2009). User 

intervention is required for giving prior 
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information on the sequence of photographs and 

the images need to be captured such that there is 

sufficient overlap between them for a successful 

reconstruction.  

Videogrammetry is based on the same principle as 

photogrammetry, except the relationship between 

the images in each frame will be known a-priori 

since each frame is sequentially recorded in a 

video. Due to higher overlap between subsequent 

frames, videogrammetry based 3D reconstruction 

can generate a better as-built model with a higher 

degree of automation (Brilakis et al. 2011; Fathi 

and Brilakis 2011; Tissainayagam and Suter 

2005). Schops et al. reported an error of 5% in 

depth map measurement using existing automated 

reconstruction methods (Schöps et al. 2016). 

Brilakis et al. presented a videogrammetry 

framework to acquire dense 3D point clouds using 

stereo cameras which are accurate, automatic and 

cost-efficient (Brilakis et al. 2011). Changes in 

illumination levels, abrupt, and fast movement of 
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the camera and noise can interfere with feature 

extraction. These can cause failure in matching of 

features between successive frames (Remondino, 

Fabio; El-Hakim 2006). The automation of 

videogrammetry is not always successful in 

practical applications and the spatial data retrieved 

from videogrammetry is at the expense of their 

measurement accuracy (Zhu and Brilakis 2009). 

It was observed that the majority of literature 

focussed on 3D reconstruction methods from 

imaging and videogrammetry of construction 

sites. While the data processing has become 

easier, these techniques require a high 

computational cost with frequent human 

intervention, making them less attractive for 

repetitive progress monitoring activities. 

Commercially available range imaging devices 

offer inbuilt 3D reconstruction SDK suites which 

facilitate real-time as-built model creation. This 

fully automated 3D reconstruction reduces the 

processing requirements from the end-user's side. 
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2.2.4 Consumer range imaging devices in 

construction applications 

Passive sensor based range imaging has been 

investigated in many construction applications 

such as progress monitoring, and ergonomics 

monitoring, quality conformance, safety checks, 

visualizations etc. (Ishida 2016; Kim and Caldas 

2013; Naticchia et al. 2013; Weerasinghe et al. 

2012). Chae and Kano developed a method for 

estimating the 3-D data through application in an 

actual construction site with locational 

information in the 3D space of time series from 

images using SfM technique (Chae and Kano 

2007). Brilakis et al. presented a videogrammetry 

stereo camera for acquiring spatial data of 

infrastructure and progressively reconstructed a 

scene from the images (Brilakis et al. 2011). 

Compared with photogrammetry, the entire 

reconstruction process using videogrammetry 

needs little human intervention, since the search of 

2D locations of a target point in different images 
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can be accomplished by measuring or tracking 

interesting features between consecutive video 

frames (Serby et al. 2004). Hence, 

videogrammetry has been adopted as an 

appropriate measurement technique for 

applications like automatic industrial product 

inspections (Graves and Burner 2001). Accuracy 

and resolution analysis of point clouds generated 

by Kinect sensors were studied (Zennaro et al. 

2015; Rafibakhsh et al. 2012). Shell-shell 

deviation analysis have also been employed to 

evaluate the accuracy of point clouds generated by 

photogrammetry (Majid et al. 2009). 

Active sensor based range imaging technologies 

using structured light, ToF and thermal imaging 

have also been used in areas of worker 

management and activity detection in 

construction. The Kinect sensor has been 

experimented in construction applications. It is a 

consumer-grade range camera uses triangulation 

and multiple pseudo-random pattern light ray 
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projection measured with an integrated RGB 

camera to capture reality. Data from Kinect 

sensors have been used for worker activity 

classification using Gaussian mixture based 

classifiers (Kim and Caldas 2013). Experimental 

evaluation of 1st and 2nd generation sensors for 

operational range, point cloud resolution and 

depth accuracy were also studied (Zennaro et al. 

2015). 

Low-quality raw data would result in higher post-

processing time and would require computers with 

high computation capability. However, the details 

about the process of reconstruction from most 

consumer range devices remains a black box. 

Hence, the quality of as-built point cloud models 

can be evaluated through experimental 

evaluations. Further, it is necessary to test these 

technologies in laboratory conditions and in the 

construction site to understand its performance. 
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2.3 PERFORMANCE EVALUATION 

PARAMETERS FOR RANGE 

IMAGING DEVICES 

With improvements in hardware and software 

capabilities, commercially available range images 

have increased capabilities than their 

predecessors. However, the feasibility of using 

these reality capture devices depends on the type 

of application it is being used for. The parameters 

which influence the performance of the reality 

capture devices can be categorized into two areas: 

 Parameters from construction 

perspective: quality of as-built 

models, time efficiency, mobility, 

ease of use, level of automation, 

the minimum and maximum range 

of usage etc. 

 Parameters from computer vision 

perspective: sensor resolution, 

orientation/angle of sensor with 

reference to the object, influence of 
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object characteristics on sensor, the 

accuracy of as-built models, 

resolution of as-built models, the 

influence of ambient illumination, 

Field of View, noise, calibration 

etc. 

The above performance evaluation parameters 

were chosen by analyzing prior research works on 

construction application. Researchers have 

explored the methods for evaluating the accuracy 

of the as-built models in terms of geometry and 

point distribution density of the point cloud 

(Froehlich and Azhar 2016; Zennaro et al. 2015; 

Golparvar-Fard et al. 2011c). Kopsida et al. noted 

that factors, such as range of operation, mobility 

and time required for preparation, capturing, 

processing, play a decisive role in the adoption of 

technology for construction applications (Kopsida 

et al. 2015). Further, ambient lighting conditions 

and stability of devices during constant use also 

influence their adoption (Froehlich and Azhar 
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2016; Pətrəucean et al. 2015). From literature, it is 

clear that the following parameters are found to be 

critical from a construction perspective.  

 Optimum range of operation 

 Accuracy of as-built models 

 Mobility and time efficiency 

 Influence of lighting conditions 

 Device characteristics 

Though these parameters are not exhaustive, they 

provide critical insights into the performance of 

range imaging devices.  

2.4 AUTOMATED PROGRESS 

RECOGNITION SYSTEM 

After generating the as-built models, they need to 

be brought to the same coordinate system as the 

BIM. This is achieved by aligning the as-built 

model with the BIM using control points. The 

alignment can be achieved by manually selecting 

the control points, or semi-automated where the 

user assists the system or fully automated where 

there is no user interference (Golparvar Fard et al. 
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2012; Bosche and Haas 2008). The theoretical 

concept is explained in section 3.6.  

After successful alignment of the as-built model 

with the BIM, both the models will be in the same 

coordinate system and superimposed on each 

other. The progress recognition is split into two 

steps. In the first step, the progress is detected by 

verifying the existence an element/object in the 

same location in both the models. Then, the 

detected progress is measured cumulatively. In 

order to validate the detection of progress, 

confusion matrix metrics such as accuracy, recall 

and precision are used. These metrics are widely 

used in object recognition and classification in 

computer vision. 

Several types of recognition methods such voxels, 

surface, point to point which use classifiers such 

as binary, linear SVM, point-to-point, 

probabilistic etc. have been explored by past 

works to detect construction progress. These 

approaches are reviewed in this section.  
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2.4.1 Voxel-based approaches 

A voxel is a cuboid in 3D space, which is usually 

an array of discretized grid-like elements. They 

are similar to pixels in a bitmap. They consist of 

regularly spaced vertices defined in the global 

coordinate system. The progress of a construction 

site can be measured by segmenting the scene into 

discrete voxel cells and by marking them as free 

or occupied, independent from the data collection 

technique since only the position is required. For 

construction progress recognition, each cell which 

intersects a triangle of the BIM/containing 

adequate number of points, can then be labelled as 

BIM occupied. Later, all voxels, which are 

labelled as occupied, can be labelled ‘as-built’ if 

the number of points from the as-built point cloud 

model is also inside the cell is above a predefined 

threshold; otherwise, they are marked as not built. 

Simple voxel threshold based binary classifiers 

were first explored by Bosche and Haas for 

automated object retrieval using point thresholds 
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and plane deviation of as-built point cloud from 

laser scanning (Bosche and Haas 2008). The 

occupancy state of a voxel (empty or occupied) 

depends on the accuracy of scanning technology. 

In another method called ray casting, all voxel 

cells in the field of view of a scanning position are 

assigned the state visible if the ray from the 

scanning position passes the centre of the voxel 

without intersecting a surface triangle; and 

labelled unknown otherwise (Bosché et al 2010). 

Based on certain heuristics, this voxel-based 

approach can be extended to handle occlusions 

(Braun et al. 2016; Sirmacek and Lindenbergh 

2014). Tuttas et al. developed a probabilistic 

approach based on voxel comparison using 

photogrammetric point clouds and BIM (Tuttas et 

al. 2014).  

Bayesian probabilistic model, which learned the 

dynamic thresholds for classification, was 

implemented using linear Support Vector 

Machine (SVM) classifier for recognizing 
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progress deviations (Golparvar‐Fard et al. 2015).  

An advantage of the voxel based method is that it 

allows a higher tolerance for point clouds with 

larger dimensional errors and plane deviations. 

However, it should be noted that in the above most 

of the above studies, as-built point clouds from 

laser scanners were used as input for the 

classifiers. These point clouds are dense and have 

uniform point density. As a result, machine 

learning based classifiers might not be able to 

achieve similar progress recognition accuracies 

for sparse and non-uniform point clouds.  

2.4.2 Surface recognition based approaches 

Surface based approaches use triangles in the 3D 

representation of a BIM to measure the surface 

covered by as-built points for progress detection. 

The matching parameters can include the point-to-

surface distance, point surface colour as well as 

normals. If an as-planned point cloud has been 

used for alignment and if it has been constructed, 

the Euclidean distance between each point pair is 
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sufficient. If a point is recognized as belonging to 

a surface, the surface covered by this point has to 

be calculated. To decide whether the recognized 

points are sufficient to confirm the existence of the 

building element, the number of recognized points 

and the mean distance between them is compared 

with the same parameters of a point set sampled 

uniformly on the triangle surface. If the deviations 

are above a certain threshold, the recognized 

points are not dense enough or close together to 

represent a continuous surface. 

Tuttas et. al proposed an approach that matched 

the relevant points from the as-built point cloud 

model directly onto the triangulated surfaces of 

the as-planned model (Braun et al. 2015). Some 

research approaches used a surface based 

recognition metric for progress recognition; these 

approaches recognize an object when the 

recognized surface exceeds a minimum threshold 

(Nicolas et al. 2012; Bosche et al. 2008). It should 

be noted that the surface-based approach is more 
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difficult for point clouds which have a lower 

uniform density. Additionally, the method 

requires a lower root mean square deviation of the 

point cloud plane.  

However, as noted previously, point clouds from 

passive photogrammetry and range imaging 

contain considerable dimensional errors are often 

obtained commonly from passive range imaging 

cameras. Thus, these methods might not be 

feasible for the current study.  

2.4.3 Other approaches 

Zhang & Arditi developed a method that counts 

the number of points in the related portions of the 

point clouds generated by photogrammetry and 

compared it against point cloud generated by laser 

scanners (Zhang and Arditi 2013). Rebolj et al. 

compared a segmented site image and a model 

using an algorithm that recognizes the differences 

between element features (Rebolj et al. 2008). 
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2.5 RESEARCH GAPS 

The earlier technologies discussed in this section 

have inherent limitations such as the lack of 

mobility, high cost, requirement of highly skilled 

personnel for operation and absence of semantic 

information. While laser-based as-built data 

acquisition systems are highly accurate, factors 

like the high equipment cost, mobility issues, large 

post processing times, limit its widespread 

adoption in construction sites. Even though 

photogrammetry addresses most of the above 

concerns, a large part of 2D to 3D reconstruction 

is not completely automated. A summary of all the 

technologies for construction monitoring is shown 

in Figure 2.4. Black cells indicate good 

performance, while the grey and white cells 

indicate mediocre and poor performance 

respectively (Kopsida et al. 2015). 

It can be seen that, while lasers are accurate, they 

perform poorly in many other parameters. Only 

static imaging, videogrammetry and commercial 
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range imaging devices have the maximum 

parameters compliance under mediocre and good 

performance. However, as noted previously, the 

former two technologies involve considerable user 

interference and are at present computationally 

expensive.  
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Consumer range imaging devices have become 
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Figure 2.4 Summary of technologies for automated as-built data capture, 

adapted from (Kopsida et al. 2015) 
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affordable and evolved to enable automated 3D 

reconstruction. Thus they are seen as alternatives 

for automated as-built data capture. However, 

research on the application of these technologies 

for progress monitoring has not been studied due 

to their limited accuracy and range. Further, the 

performance of these technologies and their 

associated benchmarks have not been explored in 

detail in laboratory controlled conditions and in 

construction site.  

Additionally, modification of the existing progress 

recognition methods are required to suit the as-

built point clouds from range imaging device. 

Most of the progress recognition methods use as-

built data from laser scanners. These as-built point 

clouds have high accuracy and a dense point cloud 

resolution. Hence, the threshold parameters used 

by these research works cannot be directly 

adopted for progress recognition using as-built 

data from range imaging devices. It was also noted 

that the computational time and effort required for 
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these approaches were not recorded in any of the 

research works. These constitute a knowledge gap 

which this work aims to address. Such a study can 

help to evaluate the accuracy of the generated as-

built models, operational conditions influencing 

the quality of as-built point cloud models and the 

level of progress prediction accuracy achievable 

using these data. 

2.6 SUMMARY 

This section discussed the research works for 

earlier technologies such as Barcodes, RFID, 

UWB, GPS/GIS, their advantages and limitations. 

Prior research works which explored the use 

active and passive sensors for construction was 

also discussed. Further, research on the 

application of range imaging devices for 

construction such as worker productivity, progress 

monitoring etc. were reviewed.  

Additionally, the evaluation parameters to assess 

the performance of range imaging technologies 
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were reviewed. The section concluded with the 

review of progress recognition methods such as 

voxel based, surface recognition based approaches 

and the corresponding classifiers used.   
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CHAPTER 3 

3 CHAPTER 3 OBJECTIVES 

AND METHODOLOGY 

OBJECTIVES AND 

METHODOLOGY 

 

3.1 INTRODUCTION 

The previous chapters discussed in detail on the 

need for automated monitoring in construction and 

the necessity of using range imaging devices for 

reality capture. The chapter concluded with the 

identification of knowledge gaps in literature for 

using these devices for construction progress 

monitoring. This chapter builds on the previous 

chapters and defines the broad definition of the 

problem statement, the aim and objectives of this 

work, its scope, and the methodologies followed.  
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3.2 PROBLEM STATEMENT 

The need to quickly assess the progress of building 

construction and the challenges involved in using 

consumer range imaging technologies for 

automated as-built data capture and progress 

recognition was discussed in the previous 

chapters. Owing to mobility, high cost, skill level, 

ease of use, range imaging technologies can 

effectively aid in capturing construction progress. 

However, the quality of the generated as-built 

models from these technologies needs to be 

evaluated. This study focuses on the evaluation of 

two consumer range imaging devices for their 

feasibility for construction progress monitoring 

application.  

3.3 AIM AND OBJECTIVES 

The aim of this study is to evaluate the capability 

of two range imaging devices based on 

stereovision and infrared technologies for 

capturing as-built data and assess its level of 

feasibility for monitoring construction progress. 
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This is achieved through three objectives, which 

are as follows 

 To study the performance of two 

range imaging devices: passive 

stereovision and active infrared 

range imaging devices in the 

Laboratory Test bed and the 

Construction Site. 

 To design an Automated Progress 

Recognition System and develop a 

prototype 

 To evaluate the performance of the 

Automated Progress Recognition 

System based on conventional 

object recognition metrics.  

3.4 SCOPE 

The performance evaluation parameters of the 

devices for this study are limited to evaluating the 

optimum range of operation, accuracy of as-built 
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models, mobility & time efficiency, the influence 

of lighting conditions, device characteristics 

including scan speed and stability. This study 

focusses on the capturing as-built information for 

Masonry and Concreting components only. 
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3.5 METHODOLOGY 
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The methodology followed in this study is shown 

Figure 3.1 Research Methodology 
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in Figure 3.1.  

3.5.1 Phase 1: As-built Data Capture 

Evaluation 

In Phase 1 of the research methodology, the 

existing literature is reviewed to understand the 

gaps in using other technologies for automated 

construction progress monitoring and application 

of range imaging based cameras in construction 

environments. These were elaborated in section 

2.2. Then, the evaluation parameters for testing the 

performance of the devices are selected from the 

literature based on its relevance in construction 

applications and was discussed in section 2.3. 

Finally, the performances of the two range 

imaging cameras are evaluated for the selected 

parameters in the laboratory test bed and the 

construction site. 
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3.5.2 Phase 2: Automated Progress 

Recognition System Design and 

Development 

In Phase 2, an Automated Progress Recognition 

System was designed based on comparison and 

modification of existing methodologies. A 

prototype of the system was developed for testing 

the as-built data.  

This phase involves a review of the literature to 

understand and compare existing progress 

recognition methods and was discussed in section 

2.4. Based on the review, the selected method is 

modified to suit the scan data. Then the modified 

method is evaluated for its performance by 

conducting tests using as-built data from 

laboratory test bed and construction site. A 

prototype of the progress recognition system is 

developed for this purpose.  
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3.5.3 Phase 3: Progress Recognition System 

Evaluation 

In Phase 3, the efficiency of Automated Progress 

Recognition System prototype and the as-built 

data from both the devices were evaluated using 

object recognition metrics such as accuracy, 

Recall, and Precision. For this phase, the as-built 

data from both laboratory test bed and 

construction site is evaluated. The performance of 

the progress prediction of the system and the as-

built data was compared with the values reported 

in the literature.  

3.6 THEORETICAL CONCEPTS 

3.6.1 Scan-to-BIM registration 

The scan-to-BIM registration process is in Phase 

2, under the design and development of the 

automated progress recognition system. The as-

built point cloud model obtained from the device 

need to be registered to the same coordinate as the 

BIM. To achieve this, the procedure described by 
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Horn was used to coarsely align both the models 

and achieve sufficient overlap (Horn 1987). 

Horn’s method finds the optimal transformation 

between two point sets M (model) and D (data) 

based on n pairs of corresponding points. A 

transformation in the 3D coordinate system 

comprises of 7 degrees of freedom: a translation t, 

a rotation R and a scale s in x, y, z directions. Since 

one corresponding pair of points provides three 

equations (one in each dimension), n=3 results in 

nine constraints which are enough to calculate the 

seven unknown transformations. The point sets 

from the as-built model and the BIM containing 

the three corresponding pairs are mostly detected 

manually and make the only manual part of the 

registration process (Bosché 2010). Cloud 

Compare, a software platform designed for 

manipulating point clouds was used in this 

research. It’s ‘Point based alignment tool’ aligns 

two models based on three user-defined control 

points (Daniel GM, 2015). After the coarse 

registration, the alignment is refined by using 
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Iterative Closest Point algorithm (ICP). A 

maximum root mean square error of 2cm is used 

to stop the ICP registration.  

3.7 SUMMARY 

This chapter discussed the objectives of the 

research work and its scope. The research 

methodology followed in this work was also 

described. The methodology was divided into 

three stages. Phase 1 involves literature review of 

earlier technologies, application of range imaging 

devices in construction and progress recognition 

methods. The research gap identification, 

selection of evaluation parameters for range 

imaging devices were also discussed in this sub 

section. Phase 2 involved design and development 

of a prototype of an automated progress 

recognition system. The third phase of the 

research is the evaluation of the progress 

recognition system for as-built point cloud models 

from laboratory test bed and construction site. In 
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addition, this chapter also discussed the theoretical 

concepts the scan-to-BIM registration process. 
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CHAPTER 4 

4 CHAPTER 4 EXPERIMENTAL SETUP AND 

EVALUATION METHODS 

EXPERIMENTAL SETUP AND EVALUATION METHODS 

 

4.1 INTRODUCTION 

In the previous chapter, the research methodology and the broad phases of the research 

were discussed. This chapter focuses on parts of phase 1: automated as-built data 

capture evaluation and phase 2: automated progress recognition system design and 

development. Section 4.2 introduces the range imaging devices along with the software 

used for evaluation. Further, the section also discusses the laboratory test bed, the 

construction site and the experiments for the parameters selected for this research. 

Section 4.3 elaborates the details of the design and development of the automated 

progress monitoring system of Phase 2. This section also discusses the metrics used for 

assessing the efficiency of the progress recognition system.  

4.2 PHASE 1: AUTOMATED AS-BUILT DATA CAPTURE 

In this section, the hardware and software that were used to capture reality and the 

experimental methodologies for performance evaluation of these devices and the 

quality of the as-built models generated are discussed.  

4.2.1 Hardware Components 

Currently, there are numerous commercially available range imaging devices for 

capturing reality. A brief comparison of the technical specifications and the cost is 

shown in Figure 4.1.  

Based on the sensor resolution, specified range, Field of View (FoV) and cost of the 

currently available range imaging devices, ZED camera and Google Tango (previously 

known as Project Development Kit) were selected for evaluation in this study. These 

devices are employed as test cases for evaluation of the underlying technology. 

However, for ease of understanding, they are referred by their brand names wherever 

applicable. 
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4.2.1.1 ZED stereovision camera 

ZED camera (representative image shown in Figure 4.2) is a stereoscopic passive RGB 

camera that uses stereo camera lens sensors and algorithms to reconstruct the 3D scenes 

from the stereo images. The camera has a maximum resolution of 2208x1242 pixels 

resolution at 15FPS. It comes with software SDKs that can be used to calibrate and 

create 3D reconstructed models. The ZED SDK processes the disparity map on the host 

Figure 4.2 ZED Stereovision Camera 

(Stereolabs, 2016) 

Kinect
Structure 

Sensor

Project Tango 

Development Kit
ZED Camera

Duo Stereo 

camera

Bumblebee 

stereo camera -

Active sensors

IR camera with 

640x480 pixels 

at 30 Hz

VGA IR camera 

640 x 480

4 MP 2µm RGB-IR 

pixel sensor
- - -

Passive sensors

RGB camera 

with 640x480 

pixels at 30 FPS

QVGA 320 x 

240 at 30/60 

FPS

Fish eye RGB 

camera

4 MP 2µm RGB 

camera

750x 480 to 320 

to 120

1.3MP at 

3.8mm RGB

Depth sensing 

method
Time of Flight Structured light Time of flight Visual SLAM NA NA

Specified Range 0.5m to 4.5m 0.4m to 3.5m+ 0.4m to 4m 0.5m to 20m  0.23m to 2.5m 0.5m to 4.5m

FOV
Horizontal: 57

Vertical: 43

Horizontal:58 

Vertical: 45

Horizontal:68 

Vertical: 38

Horizontal:93 

Vertical: 61

Horizontal:170 

Vertical: NA

Horizontal:66

Vertical: NA

Additional 

sensors
IMU - IMU - IMU -

Precision -
0.5mm at 40cm; 

30mm at 3m
- -

0.1 to 0.3mm 

within specified 

range

-

Supporting 

Platform

Xbox 360

Xbox one

Windows

iOS Linux, Windows
Android, Linux, 

Windows

Linux, OSX, 

Windows
Windows

Cost $100 $379 $445 $445 $599 ~ $1200  ~ $3500

Specification

Devices

Figure 4.1 Commercially available range imaging devices for capturing reality 
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machine requiring NVidia GPU with CUDA API6 or greater. The camera was designed 

mainly for autonomous navigation and mapping (Burbano et al. 2016).  

The camera’s maximum depth perception range is 20m. The ZED explorer is the 

primary software that can be used to record a video in ‘.svo’ file format (Stereolab’s 

format) which is then processed by the ZED Fusion package to create disparity maps 

from the stereo images and subsequently create a 3D point cloud. Each frame from the 

video is converted into a point cloud and registered successively using visual odometry, 

enabling the creation of a point cloud represented in 3D space. While the same process 

can be done in real-time using ZED Fusion, the algorithm does not work efficiently and 

has the possibility of crashing or resulting in a distorted point cloud. However, this 

glitch may be resolved in future SDK futures.  

4.2.1.2 Project Tango development kit 

Project Tango Development Kit is an Android development level tablet (shown in 

Figure 4.3) that uses Infrared technology coupled with an RGB camera to capture depth. 

The tablet consists of a motion tracking RGB camera, Accelerometer, light sensor, 

Infrared projector, Barometer, Compass, GPS, Gyroscope. The infrared-based tablet 

uses Time-of-Flight (ToF) to detect the depth of the object being scanned. It 

incorporates Simultaneous Localization and Mapping (SLAM) for mapping its location 

to create a point cloud representation of the scanned object in 3D space.  

R-TAB Map was used for the creation of point cloud. It directly generates the 3D point 

cloud and the meshed surfaces, which are available for upload and export in ‘.obj’ file 

Figure 4.3 Project tango development kit 

(Google, 2015) 
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format for further processing. The device self-calibrates when the app starts, after which 

the user can use it for capturing scenes. 

4.2.2 Software platform for performance evaluation 

There are many commercially available software platforms, which processes 2D 

images/videos to output as an as-built model using 3D reconstruction techniques. The 

choice of software is influenced by the skill level of the user, level of automation, 

quality of the generated as-built point cloud model and time taken for reconstruction.  

In order to determine the best software for 3D reconstruction for the ZED stereo camera 

device, some commonly available software was tested. A set of 80 photographs were 

given as input for all software. The time taken for reconstruction was recorded. The 

accuracy of reconstruction was measured by analysing the number of points 

reconstructed and the area of the reconstructed surface. Finally, the percentage error in 

reconstruction is calculated by comparing the area reconstructed to the actual area of 

the object scanned. The results of these two tests are tabulated in Table. 

Table 4.1 Comparison of software packages for processing data from zed stereo 

camera 

It can be seen that ZED Fusion SDK has the least error in 3D reconstruction and least 

processing time. Hence, ZED Fusion was chosen for reconstructing 3D as-built point 

cloud models. For Tango, at the time of evaluation, only the R-TAB Map was available 

for capturing reality. Hence, it was selected for capturing as-built data for Tango. 

4.2.3 Laboratory test bed 

Tang et al. stressed the need for research on evaluation of the performance of as-built  

modelling methods using test beds that simulate the entire range of factors affecting on-

site construction performance (Tang et al. 2010). Laboratory and on-site evaluation of 

device performance help to establish standardization in test sets and performance 

measures contributing to benchmarking. In this context, comparison of the scanning 

Software  

Package 

Time 

Taken 

(s) 

No. of Points 

Reconstructed 

Reconstructed 

Surface Area 

(mm2) 

Error in 

Reconstruction 

(%) 

Remake 

Context Capture 

VisualSFM 

ZED Fusion SDK 

103 

117 

4548 

430 

21,185 

16,722 

12,086 

2,09,361 

952 

430 

370 

966 

3.05 

56.21 

62.32 

1.63 
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device in ideal conditions (simulated by laboratory experiments) and on-site conditions 

can help understand the capabilities and limitations of these devices in construction 

applications. 

A test bed setup was designed in the laboratory to study the performance of the devices 

under varying conditions such as lighting and object-camera distance. The model 

configurations in the test bed are shown in Figure 4.4. The test bed background was 

designed as a white background to bring the object into sharper focus. The objects of 

interest were centered in the test bed and captured with no occlusions. Both the devices 

were handheld during their usage.  

Two lighting conditions ‘Low’ and ‘High’ were simulated with corresponding varying 

lux ranges using an external lamp. The minimum distance of the camera from the object 

was 0.5m and the initial level of the camera was at the ground level of the object. The 

model configurations were designed such that they imitate a typical room with masonry 

walls in a construction site. Configuration 1 consists of one plane, while configurations 

2 & 3 have increasing planes with increasing complexity. 

4.2.4 Construction site 

The devices were tested for capturing four different stages of construction. The 

elements captured include masonry walls, concrete floors, columns, beams, and 

finished walls, tiled floors, windows, and doors. 

Figure 4.4 (a) Configuration 1; (b) Configuration 2;  

(c) Configuration 3 
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A 360° panoramic view of each stage is shown in Figure 4.5. Table 4.2 shows the details 

of the stages of construction and the components captured. Stage No.3 and Stage No.4 

are similar to each other while the areas captured in other stages are unique. 

Table 4.2 Stages of construction captured in construction site 

Stage 

No. 

Stage Description Components Completed 

1 Frame Columns, beams, floor, ceiling  

2 Frame + Partial Masonry Columns, beams, floor, ceiling, partial masonry 

3 Frame + Full Masonry Columns, beams, floor, full ceiling, masonry  

4 Completed Room Fully constructed room including plaster, paint, 

tile finishing, windows, doors, electrical 

switchboards 

Figure 4.5 (a) Construction stage 1 (b) Construction stage 2 (c) Construction 

stage 3 (d) Construction stage 4 
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4.2.5 Evaluation parameters 

The evaluation parameters were arrived at by review of literature of different 

technologies as explained in section 2.3. The performance evaluation parameters tested 

for this research are listed below. 

 Optimum range of operation 

 Accuracy of as-built models 

 Mobility and time efficiency 

 Influence of lighting conditions 

 Device characteristics 

The parameters were tested for both the laboratory test bed and the construction site 

with a few exceptions. Since the models used for testing in the laboratory test bed were 

small, the device characteristics could not be fully evaluated. For the construction site, 

the optimum range of operation experiment was not performed since it was not feasible 

to capture the whole room in one scene while simultaneously varying the object-device 

distance. Furthermore, the experiments for studying the influence of lighting conditions 

were simulated only in the laboratory test bed. However, the effect of lighting was 

visually observed at the construction site.  

To determine the variation of point clouds between different datasets, four datasets were 

collected and analysed for the optimum range of operation, accuracy of as-built models 

and influence of lighting conditions experiments. Each dataset is a unique set of as-built 

models which were captured under same experimental conditions. The variation in 

values between the datasets is represented through error bars with standard deviation of 

1. Each dataset contains point clouds generated at object-device distance increments of 

0.1m. Thus, the total sample size was 60 point cloud models and 64 for Tango. For 

these experiments, the variation in values are represented by an error bar showing both 

the positive and negative standard deviation.  

4.2.5.1 Optimum range of operation 

Two experiments were performed for determining the optimum range of these 

technological devices. In the first experiment, the influence of distance of the object 

from the device on the resolution of point cloud generated is studied. The object-device 

distance is increased sequentially by 0.1m and the object is captured at every increase 
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in the distance. The 3D reconstruction process used by these range imaging devices is 

a black box; each pixel of the captured image does not translate to the point cloud. 

Consequently, the point density in the point cloud does not correspond to the number 

of pixels in the 3D image. Hence, the resolution of the point cloud needs to be 

determined after the 3D reconstruction to assess the density. For each point cloud 

generated at different distances from the devices, the resolution of the point cloud is 

calculated. The resolution is the number of points present in 1cm2 of the point cloud.  

In the second experiment, the influence of distance of the object on the distortion of the 

object plane is studied. The scans at different distances are aligned and superimposed 

on a ground truth model. The distance between the point cloud and the ground truth 

model planes are measured in Cloud Compare software and represented as Root Mean 

Square Error (RMSE). The distance range with maximum average resolution and the 

minimum average RMSE is determined as the optimum range for operating the devices. 

Within this range, the optimum capability of the devices can be exploited since the 

accuracy is the highest. 

4.2.5.2 Accuracy of as-built models 

For evaluation of the dimensional accuracy of the as-built point cloud model, 

dimensions from the as-built model are compared to the actual dimensions. The 

deviation is expressed as a percentage ratio of the deviation with respect to the actual 

dimensions (Bhatla et al. 2012; Golparvar-Fard et al. 2011c). In this study, the term 

Figure 4.6 Locations for measuring dimensions for 

accuracy analysis 
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‘dimensional error’ is used to denote the error in the measured lengths for an object. 

For the laboratory test bed, 16 as-built point clouds of the three configurations under 

varying simulated lighting conditions, and object-device distance were captured and 

analyzed. In each of the point cloud, four measurements were recorded for analysing 

the dimensional error. Thus, the total sample size for the experiment was 64 

measurements for each device. The locations of these measurements in the model are 

shown in Figure 4.6  

For the construction site, the dimensional accuracy was analyzed for the as-built data 

from the four stages of construction and compared against actual dimensions. The 

percentage dimensional error is calculated using equation 4.1. 

Average dimensional error (%)= 

∑
Dground truth-Das-built

Dground truth

n
i=1

n
∙100                              (4.1) 

The actual dimensions of elements captured in both the laboratory test bed and the 

construction site are measured using Leica Disto off-the-shelf laser surveying device 

with a range of 0.05 to 150m and an accuracy of 1mm. In the as-built point cloud model, 

the corresponding dimensions are manually extracted. The deviation between these two 

values is given an input to Equation 4.1. Meshlab interface was used to extract the as-

built point cloud dimensions. Details of this experiment is given in Table 4.3 

Table 4.3 Experiment details for evaluation of accuracy of as-built models in 

laboratory test bed 

Dataset  

No. of as-built models for ZED 

 

 

No. of as-built models for Tango 

 

 

No. of dimensions measured in 

each model 

 

Software for measuring As-built 

model dimensions 

 

15 models (captured at 0.1m increments 

for the range 0.7m to 2.1m) 

 

16 models (captured at 0.1m increments 

for the range 0.6m to 2.1m) 

 

4 

 

 

MeshLab 
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4.2.5.3 Mobility and time efficiency 

A determining factor in the adoption of a technology for construction is its ease of use 

and the time efficiency. Often multiple scans are required to capture one single floor in 

a construction site. Hence, lightweight devices that can withstand long durations of 

usage are preferred. The mobility of the devices was determined by the level of effort 

required by the user during data capture.  

The total time consumed by each device from the start of scanning until the generation 

of point cloud was recorded for as-built data in the laboratory test bed and the 

construction site (equation 4.2).  

Total time = Tdevice preparation+ Tscanning+Tpost processing                                            (4.2) 

The influence of Field of View (FOV) on scanning time is also examined. The FOV is 

calculated using equation 4.3 and equation 4.4.  

FOV  Vertical=  2∙ arctan (  
0.5 ∙ height

Fy

)                                                               (4.3) 

FOV Horizontal=  2 ∙arctan (  
0.5 ∙ width

Fx

)                                                             (4.4) 

where Fx and Fy are Focal lengths, and width and height denote the image dimension 

on the sensor.  
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4.2.5.4 Influence of lighting conditions 

Stereo cameras are light dependent for 3D reconstruction, as the algorithms require 

well-illuminated scenes for finding correct stereo matches between the images. 

Infrared-based sensors are sensitive to external light interference. To test the influence 

of lighting conditions, a Low light and High light was simulated in Laboratory to imitate 

lighting conditions in the Construction site. The experimental setup is shown in Figure 

4.7. 

The as-built models generated under the two lighting conditions were studied for the 

variation in dimensional errors using the method described in section 4.2.5.2. The 

sample size was 60 measurements for ZED camera with a split up of 15 observations 

with 4 measurements analysed for dimensional error in each observation. For Tango, 

the sample size was 64 measurements with a split up of 16 observations with 4 

measurements analysed for dimensional error in each observation. The final 

dimensional error under each lighting condition was represented as the average error of 

the four measurements in each observation.  

Table 4.4 Lighting levels 

For the construction site, the lighting conditions cannot be controlled. Hence, 

distortions in the as-built point cloud models were assessed qualitatively.  

Lighting Levels  Observed Range in 

Construction site (Lux) 

Simulated Range in Laboratory Test 

bed (Lux) 

Low 

 

High 

 

10-20 

 

180-220 

7-30 

 

170-230 

Light 

Source 

Figure 4.7 

Experimental Setup 
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This experiment focuses only studying the influence of the intensity of light under two 

extremities (low and high light). Additional factors such as light spectrum, object 

characteristics and orientation of the device were not studied.  

4.2.5.5 Device characteristics 

A clockwise scanning path was adopted for both the devices. The maximum angular 

velocity with which both devices can capture without any localization loss was 

determined by trial and error method. Device stability was evaluated by considering the 

ease of use, maximum power capacity and stability of devices in construction 

environments.  

4.3 PHASE 2: AUTOMATED PROGRESS RECOGNITION SYSTEM 

DESIGN AND DEVELOPMENT 

This section discusses the design and prototype development of the automated progress 

recognition system. Further, the validation metrics for assessing the performance of the 

as-built data for progress recognition applications are also elaborated. 
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4.3.1 Design and prototype development 

Automated progress recognition methodologies such as surface-based recognition, 

point-to-point comparison, Support Vector Machines, and probabilistic binary 

Figure 4.8 Automated progress recognition workflow 
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classification have been explored in prior research works (Braun et al. 2015; Golparvar 

Fard et al. 2012; Brilakis et al. 2011). In these works, the as-built models were generated 

by lasers scanners and photogrammetry, which differ from the as-built models from 

range imaging devices in terms of accuracy, point cloud density etc. Thus, the progress 

recognition method needs to be modified. The classification method developed by 

Boschè et al. involving comparison of point-to-point BIM and as-built models was 

altered for this research work (Bosche and Haas 2008). The algorithm workflow is 

shown in Figure 4.8 uses a basic binary voxel-to-voxel classifier for progress 

recognition.  

In the first step in Figure 4.8, the as-built model from the devices is refined by removing 

outliers. The number of neighbors to analyse for each point is set to 50, and the standard 

deviation multiplier is set to 1. All points which have a distance larger than 1 standard 

deviation of the mean distance to the query point will be marked as outliers and 

removed. The output from this process is a filtered point cloud. Simultaneously, the 

geometric BIM is converted into a point cloud representation (Point cloud As- planned 

model).  

In the next step, the point cloud as-planned model is used as a reference for registering 

the as-built model to the same coordinate system. The registration is performed using 

Horn’s method and refined by Iterative Closest Point (ICP) algorithm through Cloud 

Compare software interface. The registration is accepted if the RMSE is less than 2cm. 

After successful registration, the dimensional limits of the as-planned model is 

extracted for voxel generation. Based on these limits, the 3D space is discretized into a 

finite number of voxels along the three Euclidean axes (x, y, and z). The voxels 

generated in this step are used as a backdrop for comparison of voxel occupancy in both 

the as-planned and as-built models in the subsequent steps. 

Table 4.5 Voxel occupancy 

Occupied Empty

As-built model (A) Vi > T as-built Vi < Tas-built

BIM (B) Vi > TBIM Vi < TBIM

Binary Classifier labelling TRUE FALSE
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Then, the voxel based binary classifier is employed for the as-planned model and the 

as-built model. This classifier categorizes the occupancy state as either ‘Occupied’ or 

‘Empty’ for each of the discretized voxel using threshold values (Table 4.5). In the 

penultimate step, the voxel occupancy for the as-built model and the as-planned model 

Table 4.6 Details of automated recognition system 

BIM ('.obj' file format)

As-built point cloud model ('.obj' 

file format)

Output
Confusion Matrix values (TP, TN, 

FP, FN)

Voxel Size 11cm x 11cm x 11cm

ZED: 'Built ' Classification 

Threshold (T as-built)
40

Tango: 'Built ' Classification 

Threshold (T as-built)
250

BIM: 'Built ' Classification 

Threshold (T BIM) 
13

Prototype Development
C++ integrated with Point Cloud 

Library (PCL)

Input

A [as-built point cloud model]

Vijk [voxel grid]

Tas-built [threshold for ZED and Tango]

{Aijk} As-built Voxel Occupancy

1

2

3 Aijk=0

4 for all points in A do

5 if [point within Vijk]

6 Store point in Aijk_count

7 end if

8 end for

9 if A_count>Tas-built

10 Aijkis occupied

11 else

12 Aijk is empty

13 end if

14

Output:

end for

Algorithm 1: Voxel Occupancy Labeling for as-

built point cloud model

Start with A, V

for all Vi ,j,k do

Input: 

Figure 4.9 Pseudo code for labelling voxel 

occupancy state in as-built model 
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is compared to detect the progress. If the corresponding voxel in each model is 

occupied, the voxel is classified as ‘built’. 

The details of the parameters used in the progress recognition system are shown in 

Table 4.6. Based on the point cloud resolution values determined earlier, the 

classification threshold values were extrapolated for the voxel size by considering the 

lowest resolution in the optimum operating range.  

The binary classifier is used to detect if the number of points in each voxel points 

exceeds the threshold points for the input models. If the threshold is satisfied, the voxel 

is classified as ‘occupied’; if not, it is classified as ‘empty’ (refer Figure 4.8). The voxel 

edge length was fixed at 11cm through trial and error method to detect both smaller 

built components and larger components. 

The three configurations from the laboratory test bed and Stage 3 as-built model from 

the construction site generated using ZED camera and Tango were used for evaluating 

the Progress Recognition System. Eight as-built models were evaluated. It should be 

noted that the BIM as-planned model is taken as the ground truth model to determine 

the accuracy of progress prediction.  

B [as-planned BIM point cloud model]

Vijk [voxel grid]

TBIM [threshold for BIM]

Output: {Bijk} As-planned Voxel Occupancy

1 Start with B, V

2 for all Vi ,j,k dofor all Vi ,j,k do

3 Bijk=0

4 for all points in B do

5 if [point within Vijk]

6 Store point in Bijk_count

7 end if

8 end for

9 if Bijk_count>TBIM

10 Bijkis occupied

11 else

12 Bijk is empty

13 end if

14 end for

Algorithm 2: Voxel Occupancy Labeling for as-

planned BIM point cloud model

Input: 

Figure 4.10 Pseudo code for labelling 

voxel occupancy state in BIM  
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The workflow shown in Figure 4.8 outputs a viewer displaying the recognized progress 

along with confusion matrix values: Accuracy, Recall, and Precision. The pseudo codes 

of the algorithms for voxel occupancy labelling for as-planned BIM and as-built point 

cloud models are shown in Figure 4.9 and Figure 4.10. 

The progress recognized in the penultimate step in the workflow consists of ‘built’ 

voxels; the ones that are classified as ‘occupied’ in both the models (True Positives) 

while the voxels classified as ‘empty’ in the as-built model are the ones that are 

classified as ‘False Negative’. If the voxels are classified as ‘empty’ in both the models, 

then these voxels are denoted as ‘True Negatives’; while voxels classified as ‘empty’ 

in the as-planned model are denoted as ‘False Positive’. The pseudo code for this 

occupancy states of each voxel is shown in Figure 4.11. In this study, only the prediction 

accuracy of the ‘built’ voxels are considered for performance evaluation.  

For the purpose of monitoring, the voxels recognized as “built” needs to be converted 

to an IFC format. The volume occupied by the voxels is labeled as a part of the 

{Aijk} As-built Voxel Occupancy

{Bijk} As-planned Voxel Occupancy

Confusion Matrix [TP,TN,FP,FN]

 Cstate  [Construction State]

1

2

4

5 TP++

6 Cstate=Built

7 else if Aijk is occupied  and Bijk is empty

8 FP++

9 else if Aijk is empty and Bijk is occupied

10 FN++

11 else

12 TN++

13 end if

14

Output:

Start with Aijk, Bijk

for all i do

if Aijk=Bijk

end for

Algorithm 3: Voxel Occupancy Comparison

Input: 

Figure 4.11 Pseudo code for comparison of 

voxel occupancy state in BIM and as-built 

models 
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corresponding BIM elements using methods like semantic labeling (Han et al. 2015; 

Golparvar Fard et al. 2012; Li et al. 2008). The current research is limited to the 

comparison of as-planned (BIM) and as-built models only for progress recognition. 

4.3.2 Validation metrics  

The three configurations from the laboratory test bed and Stage 3 as-built model from 

the construction site by both ZED camera and Tango tablet were used for evaluating 

the Progress Recognition System. Eight as-built models were evaluated. The data from 

both the devices were analysed using the progress recognition system methodology as 

mentioned section 4.4. A confusion matrix was used to analyse the performance of the 

system by using the metrics: Accuracy, Recall, and Precision. Confusion matrix/error 

matrix helps in visualization of the performance of an algorithm (Stehman 1997). 

Accuracy is the ratio of correctly predicted cases to the total dataset (equation 4.5). 

Recall is the proportion of actually positive ratio cases that were also predicted positive 

(equation 4.6). It is an indicator of the completeness of the recognition. Precision is the 

proportion of predicted positives vales which are also actually positive (equation 4.7). 

It is an indicator of the correctness of detection. The desirable values for each of these 

metrics differ based on the type of algorithm and its purpose. Hence there is no 

consensus on the optimum range for these metrics (Powers 2011).  

Table 4.7 Confusion matrix 

  
BIM 

  
Actual Positive Actual Negative 

As-built Data 
Predicted Positive True Positive(TP) False Positive (FP) 

Predicted Negative False Negative (FN) True Negative (TN) 

 

Accuracy= 
∑ True Positives + ∑ True Negatives

∑ Total number of  Voxels
                                                (4.5) 

 

Recall= 
∑ True Positives

∑ True Positives + ∑ False Negatives
                                                    (4.6) 
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Precision= 
∑ True Positives

∑ True Positives + ∑ False Positives
                                                (4.7) 

From a construction point of view, it is desirable to have a good compromise between 

the precision and recall values so that the progress prediction can be trusted with a 

higher confidence (Dimitrov and Golparvar-Fard 2014; Hui, L. and Brilakis 2013; 

Bosché 2010). Finally, the values of Accuracy, Recall, and Precision of this system are 

compared with the values found in literature for other progress recognition 

systems/classifiers to assess the system’s performance.  

4.4 SUMMARY 

This section described the experimental setup, range imaging devices and evaluation 

methods for phase 1 of the research methodology: automated as-built data capture. 

Section 5.2 elaborated on the technological devices used for this research, its hardware 

specifications and the software platforms used for evaluation. Additionally, the objects 

used for capture in the laboratory testbed and the construction site were discussed. The 

details of the experimental methods for assessing the five evaluation parameters were 

discussed in this subsection. In section 4.3, the design and development of an automated 

progress recognition system for the as-built data generated by both the range imaging 

devices were elaborated. The metrics for evaluating the efficiency of progress 

recognition were also discussed. 
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CHAPTER 5 

5 CHAPTER 5 RESULTS AND DISCUSSION 

RESULTS AND DISCUSSION 

5.1 INTRODUCTION 

In this chapter, the results of the As-built Data Capture Evaluations from Phase 1 is 

discussed. Further, the results of the Progress Recognition System Evaluation from 

Phase 3 is also discussed. The results of evaluations in Phase 1 are segregated into two 

sections: Laboratory test bed and Construction site. Under each subsection, the 

discussions also include the implication of the results for construction environments.  

5.2 PHASE 1: PERFORMANCE EVALUATION IN LABORATORY 

TESTBED 

5.2.1 Optimum range of operation 

The variation of resolution of the as-built model with respect to the distance of object 

for ZED camera and Tango tablet is shown in Figure 5.1and Figure 5.2. It was observed 

that ZED camera did not detect the scene when the object-device distance was within 

0.6m. The resolution of as-built point cloud model generated by ZED camera decreased 

beyond 1.1m distance of the device from the object. The resolution of the point cloud 

depends on the sensor pixel resolution and the stereo correspondences. For ZED 

camera, the Back Illumination (BI) CMOS sensor resolution is 2 micron pixels. With 

an increase in object-device distance, the ZED camera’s resolution limits the capture of 

Figure 5.1 Influence of object-device distance on 

resolution of point cloud models generated by ZED 

Camera 
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unique features which in turn affects the 3D reconstruction. Thus with an increase in 

distance, the sensor’s resolution causes a decrease in the resolution of the point cloud. 

From the error bars in Figure 5.1and Figure 5.2, it was observed that ZED camera had 

a lower standard deviation of the average point cloud resolution compared to Tango.For 

Tango, the resolution decreased after 1.1m distance mark. The RGB IR camera in 

Tango has a resolution of 2µm. Similar to the behaviour observed in ZED Camera, with 

an increase in distance, Tango’s sensor resolution causes a decrease in the number of 

points per unit area.  

In the second experiment, the variation in RMSE of the point cloud models with an 

increase in distance of the object from the camera is studied. Figure 5.3 and Figure 5.4 

show the RMSE for ZED and Tango respectively. The resolution of the point cloud 

depends on the sensor pixel resolution and the stereo correspondences. ZED camera 

Figure 5.2 Influence of object-device distance on 

resolution of point cloud models generated using 

Tango 
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was observed to have a lower error in the range 0.7m-1m while Tango tablet had lower 

RMS error in the range 0.6-1.1m. The RMSE depends on both the sensor resolution and 

the 3D reconstruction algorithm. For ZED, with an increase in distance, the object of 

interest becomes smaller, thus fewer correspondence points are reconstructed.  

However, for Tango, the range of RMSE is significantly lower than that of ZED. This 

is due to its ToF technique of data capture, which provides more dimensionally accurate 

3D reconstruction.  

For both the devices, the sensor resolution influences the resolution of the point cloud 

generated. Higher resolution of point clouds helps capture the scene more accurately. 

For Tango, the variation of the resolution and the RMSE with an increase in object-

device distance was observed to be unpredictable beyond 1.1m. However, the reason 

for this behaviour could not be determined from the current dataset. Additionally, it was 

observed that the standard deviation of the four samples at each object-device distance 

showed minimal variation within 0.6m to 1m for Tango, was increasing drastically 

beyond that limit.  

 From the above experiments, the optimum range of usage (with maximum resolution 

and minimal RMSE) for ZED was 0.7-1m while for Tango it was 0.6-1.1m.  

5.2.2 Accuracy of as-built models 

After determination of the optimum range of operation in the above section, the 

dimensional error in the point clouds generated within the optimum range is calculated. 

0

2

4

6

8

0.5 0.8 1.1 1.4 1.7 2

A
v
er

ag
e 

R
M

S
E

 (
cm

)

Object-Device distance (m)

Figure 5.4 Influence of Object-Device distance on 

average RMSE of point cloud models generated using 

Tango 



 

94 

 

The dimensional error in the point clouds generated by models in the laboratory test 

bed was analyzed using the method described in section 4.2.5.2. 

Figure 5.5 and Figure 5.6  show the variation of dimensional accuracy with reference 

to the object-device distance for ZED camera and Tango respectively. From Figure 5.5, 

ZED camera has an average dimensional error of 1.40% in the optimum distance range 

of 0.7m -1m while Tango has a dimensional error of 1.20% in the optimum distance 

range of 0.6m-1.1m (Figure 5.6).  

The error bar for the dimensional error from the 4 datasets were plotted with the 

standard of the four datasets. From the error bar in of the above figures, it was observed 

that within the optimum range, the variation of the average dimensional error for the 4 

datasets was minimal for both the devices. However, this variation increased with the 

increase in the object-device distance. 
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Figure 5.5 Influence of object-device distance on 

average dimensional error percentage for point 

clouds generated by ZED Camera 

0%

1%

2%

3%

4%

0.5 0.8 1.1 1.4 1.7 2

A
v

er
ag

e 
D

im
en

si
o
n

al
 

E
rr

o
r 

(%
)

Object-Device Distance (m)

Figure 5.6 Influence of object-device distance on 

average dimensional error percentage for point clouds 

generated by Tango 



 

95 

 

For ZED, the average resolution is 0.6 points/cm2 for point cloud models generated in 

the range of 0.7m-1m (Figure 5.1). For Tango, the average resolution is observed as 3.7 

points/cm2 in the range of 0.6m-1.1m (Figure 5.2).  

The dimensional accuracy of Tango tablet is higher than ZED camera due to the 

technique of Range imaging as elaborated in the previous evaluation. However, the 

resolution of the point cloud generated by both the devices is sparse. Lower resolution 

affects the accurate capture of smaller objects. Thus, in construction environments, 

components such as reinforcements, electrical fixtures were not captured accurately. 

5.2.3 Mobility and time efficiency 

The models captured in the laboratory test bed are smaller, compared to the elements 

in a construction site. As a result, the scanning time is much shorter and the post-

processing time is negligible. The variation of time required for scanning with respect 

to the distance of the object from the device is shown in Figure 5.7. It can be observed 

from the figure that the scanning time is inversely proportional to the distance of the 

object from the device. In particular, beyond 1.1m, the scanning time stabilizes for both 

the devices. This is due to the Field of View (FOV) of the devices which is calculated 

as described in section 4.2.5.3.  

Using equation 4.3 and equation 4.4, the horizontal and vertical FOV of ZED camera 

were determined as 93° and 61° respectively. Similarly, Tango tablet was determined 

to have a horizontal FOV of 68° and a vertical FOV of 38°. During the evaluation of 

the optimum range of operation experiment, it was observed that at 0.6 to 0.8m object 

distance, the device’s FOV limits the scanning area visible to the camera, resulting in 

longer scanning time. However, with an increase in object-camera distance, the FOV 

Figure 5.7 Comparison of influence of object-

camera distance on average scanning time for 

ZED camera and Tango 
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increases and as a result, the scanning time decreases. It was observed that due to larger 

FOV, ZED camera was able to scan areas much faster than the Tango tablet. While the 

laboratory test bed evaluations show the influence of FOV on capture speed, further 

implications of FOV- scanning time in a construction site is discussed in section 5.3.2. 

5.2.4 Influence of lighting conditions 

All three configurations were captured and as-built point cloud models were generated 

in two lighting conditions as described in section 4.2.5.4. The average dimensional error 

for the 4 sets of point cloud data at each object-device distance in low light condition is 

shown in Figure 5.8 and Figure 5.9.  

It was observed that ZED camera as-built models had lesser dimensional errors with 

better illumination (Figure 5.8). On the other hand, the average dimensional error of 

both the devices in high light condition is shown in Figure 5.10 and Figure 5.11. It was 

observed that higher illumination interferes with infrared technology causing 
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dimensional errors in as-built models generated by Tango (Figure 5.11). Thus, the 

dimensional error increased marginally in this lighting range. Hence, it can be used 

reliably during daytime and night-time provided there is minimum illumination, but 

less concentrated light. But during periods of high infrared radiation such as noon and 

evening, Tango can experience interference in its capturing technology, thus affecting 

the quality of as-built models. The IR camera also prevents Tango from being used 

outdoors under direct sunlight. This affects the capture of exteriors sections of 

buildings.  

Further, it should be noted that the variation observed in the dimensional error under 

the two lighting conditions is marginal. However, the variation between of average 

dimensional error between the datasets is high for Tango in the high light condition 

(Figure 5.9 and Figure 5.11). A similar variation was observed for ZED in the low light 
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Figure 5.10 Influence of high lighting (170 lux – 230 lux) 
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variation (Figure 5.8). One of the reasons for this variation in the dimensional error 

across the sample is the optimization process embedded in the SDK. 

5.3 PHASE 1: PERFORMANCE EVALUATION IN CONSTRUCTION SITE 

5.3.1 Accuracy of as-built models 

 The percentage of dimensional error for as-built models generated from the 

construction site was calculated. The results are shown in Table 5.1. In each 

construction stage, different components’ dimensions were measured. The components 

B1, B2, B3, B4, B5, and B6 indicate the length of six different beams. The components 

C1, C2, C3, C4, C5 and C6 indicate heights of six different columns. The Tango tablet 

has an average dimensional error of 3.07% and ZED has 7.81%.  

In comparison, the point clouds generated by laser scanners have a dimensional error 

in the range of 0.004-0.009m with a higher resolution (Golparvar-Fard et al. 2011c). 

Hence, both ZED and Tango can be used for progress monitoring applications. 

However, due to a higher dimensional error and lower resolution, they can only be used 

for capturing large components such as masonry and concreting elements. Smaller 

components such as MEP elements, reinforcements, fixtures could not be captured for 

this research. Hence, the feasibility of using the devices for assessing progress for these 

components was not studied. 

Table 5.1 Accuracy of as-built model from construction site 
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Tango tablet was observed to have more accurate as-built models when compared to 

ZED camera due to its active sensor based method (ToF) for depth computation.  

5.3.2 Mobility and time efficiency 

The ZED camera weighs 160 grams, making it very light to carry and use. However, to 

scan an area, the camera needs to be powered through a USB cable to a computer that 

runs the SDK. Thus, the user needs to carry a computer in order to use the device on 

site. Tango, on the other hand, weighs 370g and does not require an external power 

source. The point cloud is generated by the Application can be viewed in real time on 

the tablet, making it much more user-friendly. To determine the time efficiency of the 

device, the time required for preparation, scanning, and data processing are measured 

for the four stages. 

 From the Figure 5.12, the pre-processing/device preparation prior to the scanning 

process is negligible for both the devices. While the post-processing time of ZED is 

higher than tango for as-built data from all the construction stages, it is more stable for 

prolonged use. Since ZED requires an external power supply for operation, 

workarounds using processor boards such as NVidia Jetson kits help ease the mobility. 

ZED camera, with its long-range capacity, can be used to capture both small and large 

areas without experiencing malfunctions. 

As noted in section 5.2.3, the FOV of ZED is higher than that of Tango. This influences 

the speed of capture in construction sites where multiple areas needed to be scanned 

continuously. Prolonged use of the Tango tablet results in heating of device and 
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crashing of either the scanning app/sensor/ OS. This results in loss of scan data that 

cannot be retrieved even upon restarting the device. Thus, Tango cannot be used 

continuously to scan multiple areas in a site due to hardware and software limitations. 

5.3.3 Influence of lighting conditions 

Stereo reconstruction algorithms depend on accurate correspondence of the image 

frames, which in turn relies on unique features in the images. These features are better 

identified with enhanced lighting conditions. Therefore, lighting indirectly influences 

the quality of the stereo-based 3D reconstruction. It was observed that multiple surfaces 

were reconstructed for areas which were illuminated with concentrated light in both 

ZED camera and Tango during rescanning. Figure 5.13(a) is a representative image of 

an area of masonry wall while Figure 5.13 (b) shows distortions in as-built point cloud 

model generated by ZED camera due to rescanning.  

The Tango tablet uses Infrared light to detect the depth of the scene. As a result, any 

object directly illuminated by sunlight or artificial lighting was not captured (Figure 

5.13(c)). Objects with illumination less than 4 Lux were either not detected by Tango’s 

IR sensor or the resulting reconstruction was distorted. Rescanning also causes 

significant problems such as generation of multiple surfaces instead of one surface 

(Figure 5.13 (d)). 

For both the devices, rescanning causes distortions in reconstruction. However, during 

the usage in construction environments, some areas might not be captured due to 

(a) (b) (c) (d) 

Figure 5.13 (a) Original masonry wall with area of interest highlighted in red; 

(b) Side view of point cloud from ZED: Highlighted area shows multiple surface 

reconstructed due to rescanning; (c) Front view of point cloud from Tango: 

Highlighted area shows loss of data due to sunlight interference; (d) Front view 

of Point cloud from Tango: Highlighted area shows distortion due to rescanning 
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occlusions. This can result in attempts of user to rescan. Consequently, localization 

errors occur, which results in the erroneous reconstruction of multiple surfaces for the 

same object. Thus, a path plan based on scanning environment is necessary to avoid 

rescanning. 

5.3.4 Device characteristics 

The FoV of the device and the maximum range of the device directly influence the 

scanning path. ZED’s horizontal FOV is significantly larger than its vertical FoV and 

its maximum range is 20m from the specification (Stereolabs 2016). Hence, the ZED 

camera was rotated 90° horizontally. This helped capture a larger area vertically. 

Because of the limited range of Tango, adopting a 90° horizontal flip did not cover 

more scan area. 

 The angular speed of ZED camera for scanning was limited to 0.2m/s-0.5m/s and for 

Tango was limited to 0.5-1m/s. With the increase in this speed, both devices lose track 

of its localization, causing drift errors. Thus, field personnel needs to be able to capture 

the scene with a constant speed within the above range to avoid loss of data.  

5.4 PHASE 3: PROGRESS RECOGNITION SYSTEM EVALUATION 

Three configurations (Figure 5.14 (a), (b) and (c)) in the laboratory test bed were 

captured using both ZED camera and Tango tablet. The as-built models generated were 

used to test the efficiency of the progress recognition system. The configurations are 

shown in Figure 5.14 (a), (b) and (c). The as-built model was given as input to the 

progress recognition system along with the BIM model of the configuration. The 

resulting model after ‘voxel occupancy comparison’ is shown in Figure 5.14 (g), (h) 

and (i). 
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The as-planned BIM model of the stage no. 3 in the construction site is shown in Figure 

5.15 (a), with the as-built point cloud model from ZED camera shown in Figure 5.15 

(b). The resulting model after ‘voxel occupancy comparison’ is shown in Figure 5.15 

(c). 

In Figure 5.14 and Figure 5.15, the green voxels indicate voxels that were classified as 

occupied in both the as-built and as-planned model and thus classified as ‘built’. The 

red indicates the voxels misclassified (False Positive or False Negative). Table 5.2 

 

Figure 5.14 (a), (b), (c) Laboratory configurations; (d), (e), (f) Point clouds 

generated from Tango; (g), (h), (i) Results of progress recognition system: 

classification legend -green voxels indicate correctly classified voxels, red 

voxels indicate wrongly classified voxels 

 (a)  (b) (c) 

Figure 5.15 (a) BIM of construction stage 3; (b) As-built point cloud model 

generated by Tango for construction stage 3; (c) Voxel based binary classifier: 

green voxels indicate “built” voxel & red indicate ‘not-built’  
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shows the voxel colour legend for the progress recognised using the workflow shown 

in Figure 4.8. In the table below, Ai and Bi indicate the voxel occupancy of the as-built 

model and voxel occupancy of the as-planned model respectively.  

 The green voxels indicate voxels that were classified correctly (True Positive) and thus 

classified as ‘built’. The red voxels indicate the voxels misclassified (False Positive or 

False Negative). The accuracy of the as-built data from both the devices is represented 

in Figure 5.16. 

 

The accuracy of the ‘built’ voxels is assessed through confusion matrix metrics as 

explained in Section 4.3.2. The classifier predicts with an average accuracy of 91.62% 

accuracy with an average recall rate of 74.61% and an average precision of 97.16% for 

as-built data from ZED camera in the laboratory test bed. For as-built data from Tango 

tablet in laboratory test bed, the average accuracy of prediction is 94.10% accuracy with 

an average recall rate of 75.55% and an average precision of 91.36%. But, the accuracy 

of progress measurement of as-built data from the construction site is lesser than the 

laboratory test data (Figure 5.16). It was observed that the Recall and Precision values 

decreased with increase in model complexity in the laboratory test bed.  

Lower recall values can be attributed to the loss of data/gaps in the model due to poor 

3D reconstruction which increases the number of False Negatives (FN). On the other 

hand, lower precision is caused by a higher number of False Positives (FP). This can be 

due to distortion of point cloud due to lighting conditions and accuracy limitations. Loss 

of data due to occlusions, lesser resolution due to improper scanning technique, error 

in ICP registration have an effect on the final accuracy of the progress recognition 

system.  

Table 5.2 Voxel colour for progress recognition 
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Further, the recall of as-built data from Tango reduces sharply with increase in a number 

of planes in the model, but the precision is greater than 75% for all cases. ZED camera’s 

as-built data shows a higher average recall, with a reduced precision. Conventionally, 

lower FN and FP values indicate better prediction confidence. However, for 

construction monitoring purposes, a lower recall value with higher precision is 

preferable, since all elements which are classified as ‘built’ can be trusted with a higher 

confidence. Also, in the context of productivity, this progress recognition system 

always predicts conservatively, thus avoiding optimistic rates.  

The prediction accuracies achieved by this system depends on the quality of the point 

cloud given as input. The performance evaluation tests in the laboratory environment 

give a yardstick for optimum values obtainable under near-ideal conditions. For 

achieving the optimum quality of the as-built data, the devices need to be used based 

on the threshold ranges determined in laboratory experiments of this study. These 

conditions cannot be reproducible in a construction site. Thus, the as-built data from 

the construction site gives a better insight on the performance of the data for progress 

monitoring applications. Loss of data due to occlusions, lesser resolution due to 

(c) (d) 

(b) (a) 

Figure 5.16 Accuracy, precision, and recall values for as-built data from 

ZED camera and Tango (a) Laboratory configuration1 (b) Laboratory 

configuration 2 (c) Laboratory configuration 3 (d) Construction site 
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improper scanning technique, and error in ICP registration have an effect on the final 

accuracy of the progress recognition system. 

Additionally, the computation time for the system to recognise the progress was less 

than 5 minutes for the as-built model from the construction site which was the largest 

model evaluated in this study. Hence, the prototype developed in this system is time 

efficient.  

5.4.1 Comparison between stereovision and infrared range imaging devices 

ZED camera, as noted before is a passive sensor which uses stereo images for 3D 

reconstruction. Tango is an active sensor which uses Infrared rays for depth perception 

and 3D reconstruction. It was observed that the as-built models generated by both the 

devices showed comparable progress recognition accuracies in laboratory test bed and 

in the construction site despite ZED camera’s point cloud having lower accuracy. 

5.4.2 Comparison with other progress recognition methodologies 

To ascertain the quality of the as-built data from range images against data from other 

technologies, comparisons with progress recognition values from research works, 

which used other classifiers, were made. Figure 5.17 shows the comparison of the level 

of accuracy achieved using as-built data from ZED and Tango against laser, 

conventional Single Camera photogrammetry, and Stereo Photogrammetry.  

Figure 5.17 Performance of classifiers for as-built data from range 

cameras 
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Due to gaps in reported values in literature, a complete set of accuracy, recall, and 

precision are not shown. From the figure, it was observed that the voxel-based binary 

classifier used in this research showed a higher accuracy, precision and recall values 

compared to linear SVM classifier which uses as-built models from stereo 

photogrammetry. Further, the classifier also performs better compared to the voxel-

based probabilistic classifier developed by Tuttas et al. which uses mono 

photogrammetry. However, it should be noted that even though mono and stereo 

photogrammetry fall under range imaging devices, the camera specification, method of 

capture and post-processing will influence the performance of the classifier. Hence, the 

above comparison can be used only as a reference.  

5.4.3 Comparison with other technologies 

Further to the above comparisons, the progress recognition of the as-built data from the 

range imaging devices was compared to conventional technologies such as lasers, mono 

photogrammetry and stereo photogrammetry as shown in Figure 5.18. 

Due to gaps in reported values in literature, a complete set of accuracy, recall, and 

precision are not shown. The progress prediction accuracy using as-built data generated 

by both ZED stereo camera and Tango tablet is higher than conventional methodologies 

using as-built data from similar technology such as photogrammetry. However, the 

recall and precision levels achievable are lesser than that of as-built data from Lasers. 

The above comparison does not take into account the capabilities of the classifier in 

handling low quality data. Consequently, these figures provide only an approximate 

comparison.  

Figure 5.18 Comparison of confusion matrix metrics for progress recognition 

using as-built models generated by ZED and Tango against other technologies 
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5.5 SUMMARY 

This chapter elaborates on the results of the performance evaluation experiments for as-

built models generated by both the reality capture devices. Both the devices were used 

to capture reality in a laboratory test bed setup and in construction site. The optimum 

range of usage, stability of the device in a construction site, the accuracy of the as-built 

models generated, the time efficiency of the devices and influence of external factors 

such as lighting were studied and the optimum values were established which can aid 

as best practices for usage of these devices. The as-built models generated in both the 

environments were used to evaluate the efficiency of the progress recognition system. 

Object Recognition metrics such as Accuracy, Recall, and Precision were used to 

evaluate the efficiency of the system that was then compared with efficiencies of other 

methods from the literature. The voxel based binary classifier based progress 

recognition system used in this research showed a higher prediction accuracy compared 

to other methods which use as-built data from similar technologies.  
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CHAPTER 6 

6 CHAPTER 6 SUMMARY AND CONCLUSION 

SUMMARY AND CONCLUSION 

This chapter summarizes the work done in this research. Conclusions from the work 

and the contributions of the work are present here. The potential for further work in this 

area and a brief introduction to extended applications of this framework are also 

presented. 

6.1 SUMMARY 

This research focused on the evaluation of two devices that use two different 

technologies: a passive stereovision camera and an active infrared device in 

construction environments to generate as-built models. An automated data capture 

system consisting of both the technologies was adopted to test the viability of using 

them for capturing as-built data. An automated monitoring system was adopted over 

the traditional monitoring system to monitor the progress as the automated monitoring 

system performs better in terms of accuracy and response time. This study explored the 

type of experiments needed to be performed to evaluate the applicability of these 

devices in construction environments that are dynamic and complex. 

Chapter 1 introduced the need for automated progress monitoring along with the 

research question. Chapter 2 reviewed the existing literature in the area of technologies 

for construction progress monitoring. These included lasers, RFID, barcodes, GPS/GIS, 

and imaging based sensors. It also reviewed the prior works on evaluation parameters 

for such technologies and point cloud data. Finally, the various methods for progress 

recognition were reviewed. The chapter concluded with a discussion on the research 

gaps identified from the literature review.  

Based on the identified research gap, the problem statement, aim, objectives and scope 

of work were defined in chapter 3. This was followed by an overview of the research 

methodology adopted. The methodology is split into three phases with a discussion on 

the details of each phase. Phase 1 consisted of evaluation of the range imaging devices 

based on the literature review done in chapter 2. Phase 2 focussed on the design of the 

automated progress recognition system and the development of a prototype. In phase 3, 
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the developed prototype is evaluated for progress recognition accuracy. A brief 

introduction to the scan-to-BIM registration process was also given.  

In chapter 4, the range imaging devices evaluated in this study were introduced. 

Additionally, the software platforms for performance evaluation, the testing 

environment such as laboratory test bed and construction site were discussed. The 

experimental tests for the performance evaluation of the devices were elaborated. 

Further, the design and prototype development of the automated progress recognition 

system was elaborated. The metrics for evaluating the prototype for progress 

recognition were also discussed. 

Chapter 5 presented the results of the all the performance evaluation tests of Phase 1 

along with corresponding discussions of their implication for construction. Further, 

section 5.4 on phase 3 presented the performance of the progress recognition system 

based on accuracy, precision, and recall metrics. The values for the metrics obtained in 

this study were compared with other progress recognition methods. Further, a 

comparison of performance of range imaging technologies against other technologies 

such as lasers, conventional photogrammetry for progress recognition was presented. 

These comparisons were used to prove the feasibility of the range imaging devices for 

construction progress monitoring. 

Finally, the conclusions from this study along with the theoretical and practical 

contributions are presented in Chapter 6. Further, the limitations of this work in terms 

of scope, and methodologies adopted are discussed. A brief discussion on the potential 

areas for future work are discussed. 

6.2 CONCLUSIONS 

This study explored the application of commercially available range imaging device for 

assessing construction progress. The feasibility of using the as-built data from both the 

active infrared and passive stereovision range imaging devices for construction 

progress monitoring was explored. The voxel-based binary classifier developed for 

detecting progress showed an average accuracy of 92% accuracy for laboratory test bed 

and 86% accuracy for construction site data. This answers the main research question 

of this work.  
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The stereovision device was observed to be more suitable for general construction 

applications in which the level of detail of capture is minimal and accuracy is not a 

determining factor. Its long range of operation, higher stability during capture and 

passive sensor based depth perception enable it to be used for capturing both interiors 

and exteriors of the construction. 

A summary of the performance evaluation test results and the corresponding 

implication for construction is tabulated in Table 6.1.  

 Active sensors for depth perception are more suitable for applications 

requiring higher accuracy and involving capture of indoor areas.  

Parameters Passive 

Stereovision 

device: ZED 

Active infrared 

device: Tango 

Implication for Construction 

Accuracy of 

Point 

Clouds 

Laboratory:1.4 

cm error for 

every 1m 

Construction site: 

Average error of 

8cm for every 1m  

Laboratory: 1cm 

error for every 1m 

Construction site: 

Average error of 

3cm for every 1m 

Stereovision and IR range 

imaging devices can be used for 

capturing large elements and 

assessing its construction 

progress with the present 

hardware and software 

configurations 

Optimum 

Range of 

Operation 

0.7-1m 0.6-1m Requires user to plan scan path 

to accommodate the range. 

Mobility Lightweight. 

Powered by 

laptop/computer 

Lightweight. 

Constant use after 

30-40 minutes 

causes heating of 

device 

Passive stereovision devices 

suitable for scanning large 

construction sites requiring 

multiple scans consecutively. 

Active IR devices can be used 

for smaller areas only Time 

Efficiency 

Large FOV. 

Lower scanning 

time. Higher post 

processing time 

Small FOV. Higher 

Scanning Time. 

Lower post 

processing time 

Influence of 

Lighting 

Conditions 

Additional 

illumination for 

scanning 

Sunlight 

Interference causes 

distortions and 

improper 

reconstruction 

Stereovision devices usage: 

during daytime only and to 

capture indoors and outdoors. 

IR devices usage: Building 

Exteriors cannot be captured 

during daytime 

Device 

Stability 

Lower 

probability of 

data corruption 

Overheating causes 

crashes, loss of data 

Stereovision devices have 

higher reliability in for on site 

usage 

Table 6.1 Summary of performance evaluation tests 
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 The performance evaluation tests in the laboratory test bed provide a point 

of reference for optimum values obtainable under near-ideal conditions. 

 As-built data generated by passive stereovision device in laboratory test 

showed a progress recognition accuracy of 91.62% and 87.54% for the 

construction site. 

 As-built data generated by active infrared device showed a progress 

prediction accuracy of 94.51% for laboratory test bed and 85.62% for the 

Construction site. 

 The as-built data from the active IR device in laboratory test bed shows a 

marginally higher Recall and Precision for progress prediction.  

 Stereovision and Infrared devices, despite accuracy and range limitations, 

were determined to be viable for construction progress monitoring. 

Both the range imaging devices used in this study have costs under $500. Their 

advantages like ease of use, higher mobility, quick scanning time, low post processing 

and quality of as-built data,  make them  cost-effective solutions for construction 

progress monitoring applications. However, there are some limitations. The passive 

stereovision videogrammetry device used in this research faces corruption in data when 

there is an interference due to movement of objects in a scene. This can lead to loss of 

data, especially in a construction site where the environment is subject to constant 

movement of men and machinery. Further, the progress measurement system developed 

in this research does not take into account the occlusions in the captured as-built model. 

As a result, the onus is on the user to ensure the entire scene is captured. Errors in scan-

to-BIM registration decrease the overall efficiency of the progress recognition system. 

Further, gaps in the point cloud model due to errors in reconstruction results in higher 

misclassification rate, resulting in poor performance of the classifier and the as-built 

data. 

In this study, the range imaging devices were used to capture only large construction 

elements such as masonry walls, concrete beams, floors and columns. Interior 

components such as tiles, finishes, paint, electrical components, and plumbing fixtures 

could not be captured accurately due to low point cloud resolution. As a result, the level 

of monitoring using these devices will be restricted. However, in a typical building 

projects, more than 50% of activities are based on concreting and masonry elements 
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(Navon 2005). Hence, for a macro level monitoring, progress assessment of the 

activities can help in project control. Future improvements in hardware and software 

can increase the range of elements being captured which can further extend the use of 

these devices for micro level monitoring. 

6.3 THEORETICAL CONTRIBUTIONS 

This study assessed the feasibility of using range imaging devices for capturing as-built 

construction for progress monitoring applications. The main contributions from this 

study are listed below: 

 Assessment of influencing parameters for Stereovision and Infrared 

technologies for performance for construction applications 

 Determination of best practices for optimum usage of both technologies through 

controlled environment studies 

 Development of automated progress recognition system and validation with 

data from controlled environment and uncontrolled environment 

6.3.1 Evaluation of range imaging for construction progress monitoring  

A primary driver behind this study was the fact that very little data existed that could 

help to understand the parameters to be considered for assessing the viability of 

technologies for construction progress monitoring applications. While accuracy has 

been extensively studied for many technologies, factors such as time efficiency, device 

characteristics, operating range of the devices, and lighting conditions have not been 

studied.  

ZED camera and Google Tango are chosen as representative cases for passive 

stereovision and active infrared technologies respectively. While the hardware and 

software is expected to evolve, the underlying technology will remain the same. The 

methodology for experimental evaluation of these parameters in this work helps to fill 

the gap in the existing knowledge in selection of technology for construction 

applications. Additionally it can be used for evaluating other active and passive range 

imaging devices. 

In this research, parameters that were important from a construction perspective were 

selected for the performance evaluation. The study showed that the range imaging 
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devices were time efficient, but possess technical limitations such as lower battery life, 

speed of capture etc. Evaluation of the devices for these qualitative factors will help to 

understand the practical viability of using them on the construction site. 

6.3.2 Comparison between passive and active range imaging devices 

While research works exploring commercially available range imaging devices exist, 

there is no research in comparison of range imaging devices using different techniques 

for depth perception. In this research, Google® Tango is a range imaging device which 

uses active infrared sensor and Time of Flight (ToF) technique for depth perception. 

On the other hand, ZED camera uses passive stereo vision for depth computation. Prior 

research works have studied the performance in terms of accuracy, resolution of the 

devices using similar technology based on active sensors and depth sensing mechanism 

such as KINECT, XTion PRO, and to some extent Google Tango as elaborated in the 

literature review section. However, the performance of commercially available range 

imaging devices for construction progress monitoring have not been studied. In 

particular, passive range imaging devices do not have any established benchmarks for 

accuracy and progress recognition. The performance evaluation of the passive 

stereovision ZED camera in this study fills the above gap to an extent.  

Further, this research provides a ground base for comparison of active and passive range 

imaging devices in terms of performance of the device for construction application. The 

progress recognition accuracies using the as-built data from both the devices showed 

negligible variation. Hence, while the accuracy of the point clouds from both these 

devices vary, both the devices can still be used for progress monitoring applications. 

However, the level of detail of the progress monitoring is limited due to their accuracy 

and resolution limitations. This will be elaborated in the upcoming sections.  

6.4 PRACTICAL CONTRIBUTIONS 

6.4.1 Development of automated progress recognition system 

The practical contribution of this research is the prototype of the automated progress 

recognition system. The system uses three input parameters: BIM, as-built point cloud 

model, and threshold values, for recognizing the progress. The total time for progress 

recognition using the data obtained from the construction site was under 5 minutes. 

Hence, the prototype assesses the progress quickly and automatically. This is of 
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relevance to construction, where progress updates are required frequently. A time-

efficient progress recognition system accommodates shorter frequency of updates such 

as daily/weekly/biweekly.  

6.5 LIMITATIONS AND FUTURE WORK 

A limitation of this study is that factors, like uncertainties in capturing a scene of interest 

completely, errors in reconstruction, errors in scan-to-BIM registration,  decrease the 

overall efficiency of the progress detection system. Further, occlusions and gaps in the 

point cloud model due to errors in reconstruction results in higher misclassification rate, 

resulting in poor performance of the classifier and the as-built data. Since the resolution 

and the dimensional accuracy of both the range imaging devices are low, smaller 

components such as plumbing and electrical fixtures, reinforcements, HVAC ducts will 

not be captured accurately. However, it is expected that with the evolution of the 

technology, the hardware can potentially be able to detect these components in future.  

In keeping with the big picture of the research, only some performance evaluation 

parameters were studied. Further parameters such as the effect of additional external 

lighting, object characteristics etc. can be potential future areas of research. In the below 

sections, such prospective areas are briefly discussed.  

6.5.1 Extension of current research 

The research in automated progress monitoring using technologies has increasingly 

found more importance due to the availability of better technological capabilities and 

increasing processing powers of devices. However, there are still processes in which 

human intervention is necessary. The progress recognition workflow developed in this 

study aims to automate the monitoring system to an extent where it can be used with 

minimal user interventions. However, with advancements in hardware capabilities, 

more automation and better accuracy can be achieved. Some of the directions for future 

work are summarized below.  

 Assessment of applicability of technologies for other construction activities 

such as earthwork, MEP, reinforcement 

 Extension of the current progress recognition system to handle missing data and 

Occlusion 

 Implementing heuristics and rule based checking to overcome missing data 
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6.5.2 Other areas 

Considering that the technology has not yet reached maturity, there are numerous areas 

that can be worked upon in future. Some of them are discussed below.  

 Extension of progress recognition system to include conversion of measured 

progress to IFC, for integrating and updating BIM automatically 

 Visualization of the updated schedule along with BIM in BIM platforms 

 Remote drone based automated as-built data collection using ZED and Tango. 

This involves research on path planning for efficient capture, real-time 

transmission, and processing of data for visualization 

 Extension of progress recognition system to determine the quantity of 

component completed, which can be used for quality conformance checks. 

This study explored the feasibility of using these range imaging technologies for one 

construction site. More case studies in the field can help accurate documentation of the 

performance of these technologies. Additionally, more elaborate laboratory 

experimental evaluations with the inclusion of other parameters such as intensity of 

lighting, the influence of object texture, the orientation of the device can help gain 

insights into the performance of these devices. These evaluations can also be extended 

towards establishing benchmarks and best practices for using these devices in 

construction applications.  
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APPENDIX 

C++ Prototype of the Automated Progress Recognition System 

 

//Common Headers 

#include <iostream> 

#include <vector> 

#include <pcl/common/common.h> 

//Point cloud io headers 

#include <pcl/io/obj_io.h> 

#include <pcl/io/pcd_io.h> 

#include <pcl/io/ply_io.h> 

#include <pcl/point_types.h> 

//PCL visualization headers 

#include <pcl/visualization/pcl_visualizer.h> 

#include <pcl/visualization/cloud_viewer.h> 

//PCL Segmentation Headers 

#include <pcl/search/search.h> 

#include <pcl/search/kdtree.h> 

#include <pcl/features/normal_3d.h> 

#include <pcl/filters/passthrough.h> 

#include <pcl/segmentation/region_growing.h> 

 

typedefstruct 

{ 

float x;//Struct for storing points 

float y; 

float z; 

} point3D; 

point3D grid[60][60][60]={0};// 3D array of points referenced by ijk 

 

struct voxel 

{//Structure Voxelstore each voxel information 
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    point3D points[9];//Stores the 8 vertices of a voxel 

float xmin, xmax, ymin, ymax, zmin, zmax;//Stores min & max of x,y,z of a voxel 

int count;//Stores no. of points present inside a voxel 

bool clasf;//Binary classifierdetermines 'BUILT'/‘NOT BUILT’ 

}; 

voxel vox[60][60][60]; 

voxel bim[60][60][60]={0}; 

 

 

//function tocalculate max limits of triangle 

float findmax(float a,float b,float c) 

{ 

float maxi = a; 

if(b > maxi) 

{ 

        maxi = b; 

} 

if(c > maxi) 

{ 

        maxi = c; 

} 

return(maxi); 

} 

//Function to calculate the min limits of triangle 

float findmin(float a,float b,float c) 

{ 

float mini = a; 

if(b < mini) 

{ 

        mini = b; 

} 

if(c < mini) 

{ 

        mini = c; 
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} 

return(mini); 

} 

 

//CALCULATE THE MIN AND MAX OF EACH VOXEL 

void calculate_minmax(int i,int j,int k) 

{ 

//Initialize the min and max values to the first element 

    vox[i][j][k].xmin = vox[i][j][k].xmax = vox[i][j][k].points[1].x; 

    vox[i][j][k].ymin = vox[i][j][k].ymax = vox[i][j][k].points[1].y; 

    vox[i][j][k].zmin = vox[i][j][k].zmax = vox[i][j][k].points[1].z; 

 

for(int v =1; v <=8; v++) 

{ 

if(vox[i][j][k].points[v].x < vox[i][j][k].xmin) 

{ 

            vox[i][j][k].xmin = vox[i][j][k].points[v].x; 

} 

if(vox[i][j][k].points[v].x > vox[i][j][k].xmax) 

{ 

            vox[i][j][k].xmax = vox[i][j][k].points[v].x; 

} 

} 

for(int v =1; v <=8; v++) 

{ 

if(vox[i][j][k].points[v].y < vox[i][j][k].ymin) 

{ 

            vox[i][j][k].ymin = vox[i][j][k].points[v].y; 

} 

if(vox[i][j][k].points[v].y > vox[i][j][k].ymax) 

{ 

            vox[i][j][k].ymax = vox[i][j][k].points[v].y; 

} 

} 
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for(int v =1; v <=8; v++) 

{ 

if(vox[i][j][k].points[v].z < vox[i][j][k].zmin) 

{ 

            vox[i][j][k].zmin = vox[i][j][k].points[v].z; 

} 

if(vox[i][j][k].points[v].z > vox[i][j][k].zmax) 

{ 

            vox[i][j][k].zmax = vox[i][j][k].points[v].z; 

} 

} 

 

    cout <<"xmin: "<< vox[i][j][k].xmin <<"xmax:"<< vox[i][j][k].xmax <<"\n"; 

    cout <<"ymin: "<< vox[i][j][k].ymin <<"ymax:"<< vox[i][j][k].ymax <<"\n"; 

    cout <<"zmin: "<< vox[i][j][k].zmin <<"zmax:"<< vox[i][j][k].zmax <<"\n"; 

} 

 

pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(new 

pcl::PointCloud<pcl::PointXYZ>);//Global variable 

int no_segments =0; 

 

 

int notu =0, notf =0; 

void binaryclassifier(int i,int j,int k,int threshold,const 

pcl::PointCloud<pcl::PointXYZ>::ConstPtr &input1) 

{ 

float xval, yval, zval; 

 

int coo = input1->points.size(); 

    vox[i][j][k].count =0; 

for(size_t v =0; v <= coo -1; v++) 

{ 

        xval = input1->points[v].x;     yval = input1->points[v].y;     zval = input1-

>points[v].z; 
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if(((xval >= vox[i][j][k].xmin)&&(xval <= vox[i][j][k].xmax))&&((yval >= 

vox[i][j][k].ymin)&&(yval <= vox[i][j][k].ymax))&&((zval >= 

vox[i][j][k].zmin)&&(zval <= vox[i][j][k].zmax))) 

            vox[i][j][k].count++; 

} 

if(vox[i][j][k].count >= threshold) 

{ 

        vox[i][j][k].clasf =true; 

        std::cout <<"no.of points in vox["<< i <<"]["<< j <<"]["<< k <<"] is: "<< 

vox[i][j][k].count <<"\n"; 

        notu = notu +1; 

} 

else 

{ 

        vox[i][j][k].clasf =false; 

        notf = notf +1; 

} 

} 

void binaryclassifier_BIM(int i,int j,int k,int threshold,const 

pcl::PointCloud<pcl::PointXYZ>::ConstPtr &input2) 

{ 

float xval, yval, zval; 

 

int coo = input2->points.size(); 

for(size_t v =0; v <= coo -1; v++) 

{ 

        xval = input2->points[v].x;     yval = input2->points[v].y;     zval = input2-

>points[v].z; 

if(((xval >= vox[i][j][k].xmin)&&(xval <= vox[i][j][k].xmax))&&((yval >= 

vox[i][j][k].ymin)&&(yval <= vox[i][j][k].ymax))&&((zval >= 

vox[i][j][k].zmin)&&(zval <= vox[i][j][k].zmax))) 

            bim[i][j][k].count++; 

} 

if(bim[i][j][k].count >= threshold) 

{ 

        bim[i][j][k].clasf =true; 
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        notu = notu +1; 

} 

else 

{ 

        bim[i][j][k].clasf =false; 

        notf = notf +1; 

} 

} 

 

 

int main() 

{ 

    std::string bfilename, ptcldfilename; 

 

    std::cout <<"enter BIM file name\n"; 

    std::cin >> bfilename; 

    std::cout <<"enter pointcloud file name\n"; 

    std::cin >> ptcldfilename; 

//load the BIM point cloud  

    pcl::PointCloud<pcl::PointXYZ>::Ptr bim_cloud(new 

pcl::PointCloud<pcl::PointXYZ>); 

if(pcl::io::loadOBJFile(bfilename,*bim_cloud)==-1){ std::cout <<"Cannot load BIM 

file \n";return(-1);} 

 

//Load the scan point cloud file  

    pcl::PointCloud<pcl::PointXYZ>::Ptr scan(new 

pcl::PointCloud<pcl::PointXYZ>); 

if(pcl::io::loadOBJFile(ptcldfilename,*scan)==-1){ std::cout <<"Cannot load the 

point zed file\n";return(-1);} 

 

//Autodetect which threshold to use for supplied fiel (ZED or Tango) 

int filetype1, filetype2, threshold; 

 

    std::string z("z"); 

if(ptcldfilename.compare(0, z.length(), z)==0) 
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{ 

        threshold =40;//threshold =1 for site 

} 

else 

{ 

        threshold =250;//threshold =1 for site 

} 

    std::cout <<"threshold: "<< threshold <<"\n"; 

 

//get minimum and maxim x and y values from cluster 1 file  

float Max_x, Min_x, Max_y, Min_y, Min_z, Max_z; 

    Eigen::Vector4f modelMin = Eigen::Vector4f::Zero(); Eigen::Vector4f modelMax 

= Eigen::Vector4f::Zero(); 

    pcl::getMinMax3D(*bim_cloud, modelMin, modelMax); 

 

int TP =0, TN =0, FP =0, FN =0; 

 

int userinput; 

    std::cout <<"Enter the plane for generating the point cloud\n"; 

    std::cout <<" XY --- 1\n"; 

    std::cout <<" YZ --- 2\n"; 

    std::cout <<" ZX --- 3\n"; 

    std::cout <<" BIM -- 4\n"; 

    cin >> userinput; 

 

float Xe, Xs, Ye, Ys, Ze, Zs; 

    Xe = modelMax[0];   Xs = modelMin[0]; 

    Ye = modelMax[1];   Ys = modelMin[1]; 

    Ze = modelMax[2];   Zs = modelMin[2]; 

 

//Compute edge sizes of whole file 

float x_size = abs(Xe - Xs); 

float y_size = abs(Ye - Ys); 

float z_size = abs(Ze - Zs); 

 



 

130 

 

//Specify steps (edge length of each voxel)  

float x_step =0.11; 

float y_step =0.11; 

float z_step =0.11; 

 

//compute the no. of points to be generated in each axis 

float n_stepx =(int)((x_size / x_step)+0.5); 

float n_stepy =(int)((y_size / y_step)+0.5); 

float n_stepz =(int)((z_size / z_step)+0.5); 

    point3D p; 

 

//Points per edge (including ending point) 

int n1 = n_stepx +1; 

int n2 = n_stepy +1; 

int n3 = n_stepz +1; 

int a, b, c;//a is for i. b is j. c is k 

int r, s, t; 

 

switch(userinput) 

{ 

case1:// if XY plane 

        a = n1;     r =1; 

        b = n2;     s =1; 

        c =2;      t =1; 

break; 

case2://YZ plane 

        a =2;      r =1; 

        b = n2;     s =1; 

        c = n3;     t =1; 

break; 

case3://ZX plane 

        a = n1;     r =1; 

        b =2;      s =1; 

        c = n3;     t =1; 
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break; 

case4: 

        a = n1;     r =1; 

        b = n2;     s =1; 

        c = n3;     t =1; 

break; 

} 

//Generate the equally spaced points based on BIM file 

for(int i =0; i < a; i++) 

{//move on x axis 

for(int j =0; j < b; j++) 

{//move on y axis 

for(int k =0; k < c; k++) 

{//move on z axis 

                p ={0}; 

                p.x = Xs +(x_step * i); 

                p.y = Ys +(y_step * j); 

                p.z = Zs +(z_step * k); 

                grid[i][j][k]= p; 

                cout << i << j << k <<" "<< p.x <<" "<< p.y <<" "<< p.z <<"\n"; 

} 

} 

} 

 

for(int i =0; i < a - r; i++) 

{//move on x axis 

for(int j =0; j < b - s; j++) 

{//move on y axis 

for(int k =0; k < c - t; k++) 

{//move on z axis 

                vox[i][j][k].points[1]= grid[i][j][k]; 

                vox[i][j][k].points[2]= grid[i +1][j][k]; 

                vox[i][j][k].points[3]= grid[i][j +1][k]; 

                vox[i][j][k].points[4]= grid[i +1][j +1][k]; 
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                vox[i][j][k].points[5]= grid[i][j][k +1]; 

                vox[i][j][k].points[6]= grid[i +1][j][k +1]; 

                vox[i][j][k].points[7]= grid[i][j +1][k +1]; 

                vox[i][j][k].points[8]= grid[i +1][j +1][k +1]; 

 

//Calculate the min and max value of x y z for visualization function for each voxel  

                calculate_minmax(i, j, k); 

 

//Check if points in the scan are inside the voxel  

                binaryclassifier(i, j, k, threshold, scan); 

int bthreshold =13;//threshold =1 for site 

                binaryclassifier_BIM(i, j, k, bthreshold, bim_cloud); 

if((vox[i][j][k].clasf ==true)&&(bim[i][j][k].clasf ==true)) 

                    TP++; 

if((vox[i][j][k].clasf ==false)&&(bim[i][j][k].clasf ==false)) 

                    TN++; 

if((vox[i][j][k].clasf ==false)&&(bim[i][j][k].clasf ==true)) 

                    FN++; 

if((vox[i][j][k].clasf ==true)&&(bim[i][j][k].clasf ==false)) 

                    FP++; 

} 

} 

} 

//view the voxel and the points inside it 

    pcl::visualization::PCLVisualizer view; 

    std::stringstream ss; 

 

    view.addPointCloud(bim_cloud); 

for(int i =0; i < a - r; i++) 

{//move on x axis 

for(int j =0; j < b - s; j++) 

{//move on y axis 

for(int k =0; k < c - t; k++) 

{//move on z axis 
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                std::cout <<"["<< i <<"]["<< j <<"]["<< k <<"] "<< vox[i][j][k].clasf <<"    

"<< bim[i][j][k].clasf <<" "<<vox[i][j][k].count<<" "<<bim[i][j][k].count<<"\n"; 

                ss <<"cube"<< i << j << k; 

if(vox[i][j][k].clasf && bim[i][j][k].clasf) 

                    view.addCube(vox[i][j][k].xmin, vox[i][j][k].xmax, vox[i][j][k].ymin, 

vox[i][j][k].ymax, vox[i][j][k].zmin, vox[i][j][k].zmax,0,128,0, ss.str(),0); 

else 

                    view.addCube(vox[i][j][k].xmin, vox[i][j][k].xmax, vox[i][j][k].ymin, 

vox[i][j][k].ymax, vox[i][j][k].zmin, vox[i][j][k].zmax,1.0,0,0, ss.str(),0); 

} 

} 

} 

//view.setRepresentationToWireframeForAllActors(); 

    view.addCoordinateSystem(1.0); 

while(!view.wasStopped()) 

        view.spinOnce(); 

 

//DISPLAY THE ACCURACY OF PROGERSS MEASURED 

    std::cout <<"TP: "<< TP <<"  TN: "<< TN <<"  FP: "<< FP <<"  FN: "<< FN 

<<"\n"; 

return(0); 

} 
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